TORSIONAL VIBRATIONS AND STABILITY OF THIN-WALLED BEAMS OF OPEN SECTION RLSIING ON CONIINUOUS LLASIIC IUUNDATION

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MECHANICAL ENGINEERING

By

CHELLAPILLA KAMESWARA RAO, в.sc., в.е., м.е.

DEPARTMENT OF MECHANICAL ENGINEERING COLLEGE OF ENGINEERING

ANDHRA UNIVERSITY
WALTAIR 530013
August 1975

DEDICATED

IN LOVING MEMORY
TO
Late Professor K. VENKata APPA RAO
Head of the Department of Mechanical Fngineering
Principal, College of Enginsering ANDHRA UNIVERSITY, WAITAIR.

DECLARATION

I declare that this work is entirely original and has not been submitted in part or full for any Degree, Diploma or Title of any other University.

WALTAIR, AUGUST, 1975.

Clameorore Ne
(c. KAMESHARA RAO) AUTHOR.

CERTIFICATE

This is to certify that this thesis is the original work done by Sri Chellapilla Kameswara Mao, B.Sc., B.E., M.E., Associate Lecturer, Department of Mechanical Engineering, Andhra University, Waltair and that this thesis has not been submitted in part or full for any degree or diploma of any other University.

BIOGRAPHICAL SKETCH,

The author was bom in Pedaapuram. Weast Godavary District Andhra Pradesh, on 27 th December 1947, and was the eldest son of Chellapilla Bengareswara Sarma, Head Master, Municipal High School, Narasaraopet, Guntur District, Andhra Pradesh. He was educated in Narasaraopet Municipal High School and S.S.N.College and obtained Bachelor of Science Degree from Andhra University in. 1965. In 1968, he received the Bachelor's Degree in Mechanical Engineering from Sri Venkateswara University. He received the Master's Degree in Machine Design from Andhra Unitersity in February 1971.

He worked as Junior Research Fellow (C.S.I.R.) and Senior Research Fellow (U.G.C.) during 1970-171 and joined the Facuilty of Mechanical Engineering, Andhra University College of Engineering, Waltair in December 1971, as Associate Lecturer. He registered for Ph.D. in 1972 and worked under the guidance of Late Professor K.V.Appa Rao. Upon his sudden demise, he completed his Doctoral thesis work under the guidance of Prof.P.K.Sarma.

The author was married in May 1970, and has two sons, Hema Chandra Kumar and Suresh Babu.
Pase No.
Aoknowledgements. i
Nomenclature. ii
Abstract. viii
List of Figures. xiv
List of Tables. xix
Chapter - I: INTRODUCTION AND REVIEH OF RELEVENT LITERATURE.
1.1 Introduotion.
1.2 Brief' review of relevent literature.1
1.2.1 Elastic Stability.-. 3
1.2.2 Vibrations and Wave propagation. $\cdot 8$
1.3 Aim and scope of the present investigation. $\cdot 19$
Chapter - II: TORS IONAL VIBRATIONS AND STABILITY OF LENGTHY THIN-WALLED BEAMS ON ELASTIC FOUNDATION - AN EXACT ANALYSIS.
2.1 Introduction.
2.2 Basic Assumptions.23
2.3 Derivation of basic differential equation. 26
2.4 (a) Natural boundary conditions. $\cdot 31$
(b) Time-dependent boundary conditions. 33
2.5 Analysis of various terms. $\cdot 84$
2.6 Non-dimensionalization and general solution of equation of motion. 85
2.7 Frequency equations and modal functions. 38
2.7.1 Simply supported beam. 40
2.7.2 Fixed-end beam. 51
2.7.3 Beam fixed at one end, simply supported at the other. 5 ?
2.7.4 Cantilever beam with warping restrained. . 62
2.7.5 Cantilever beam with unrestrained warping. 53
2.7.6 Beam with free ends. 54
2.8 Results and discussion. 55
2.9 Approximate solutions by Galerkin's technique. 53
2.9.1 Fixed-end beam. 63
2.9.2 Beam fixed at one end and simply supported at the other. -61
2.9.3 Limiting conditions. 65
2.10 Remarks. 68
Chapter - III: FINITE BLEMENT ANALYSIS OF TORSIONAL VIBRATIONS AND STABIIITY OF LENGTHY TITTN-WALLED BEAMS ON ELASTIC FOUNDA- SION.
3.1 Introduction. 67
3.2 Finite Element Concept. 81
3.3 Basic Finite Element theory for vibrations. 73
3.4 (a) Functional representation of angle of twist. yy(b) Formulation of Element matrices.81
3.5 Equations of equilibrium for the totally assembled beam.
3.6 Boundary Conditions.
3.7 Method Solution.
3.8 Results and Conclusions. 88

Chapter - IV: EFFECT OF LONGITUDINAL INERRIA AND OF SHEAR DEFORMATION ON THE TORSIONAT FRTOUENCIES AND NORMAL MODES OF SHORT WIDE-FIANGED THTN-WALUED BEAMS OF OPEN SECTION.

4.1 Introduction.

4.2 Basic Assumptions. - 103
4.3 Derivation of aifferential equations of motion 108
4.4 (a) Natural boundary conditions. .112
(b) Time-dependent boundary conditions.
.114
4.5.1 Single equation in angle of twist. . 114
4.5.2 Analysis of various terms.
.115
4.6 Non-dimensionalization and General solution.
.117
4.7 Frequency equations and Modal functions.
.120
4.7.1 Simply supported beam.
4.7.2 Fixed-fixed beam.
.121
4.7.3 Beam fixed at one end and e. 126
4.7.3 Beam fixed at one end and simply supported
at the other.
4.7.4 Cantilever beam with one end fixed and
4.7.5 Cantilever beam with one end simply sup. 0.123
ported and free at the other.
4.7.6 Beam with free ends.
4.8 Orthoganality and Normalizing conditions. $\quad \cdot .132$
4.9 Approximate solutions by Galerkin's technique. . 140
4.9.1 Fixed-f1xed beam.
4.9.2 Beam fixed at one end and simply supported
at the other.

$$
\begin{array}{ll}
\text { 4.10: Results and Conclusions. } & \cdot 141 \\
& .143
\end{array}
$$

Chapter - V: FINITE ELFMMENT ANALYSIS OF TORSIONAL VIBRATIONS OF SHORT WIDE-FIANGED THIN- WALIED BEAMS INCLUDING THE EFEECIS OF UONG TTUDINA INERTIA AND SHDAR DNFOR- MATION.
5.1 Introduction. $\cdot \cdot 158$
5.2 Modified energy expressions! 157
5.3 Modified natural boundary conditions. 160
5.4 Finite element formulation. 161
5.5 Derivation of element matrices incluaing Second order effects. 164
5.6 Equations of equilibrium for the totally assembled beam. 163
5.7 Boundary conditions useful for modifying the total matrices. 170
5.8 Results and conclusions.171
Chapter - VI: FORCED TORSIONAL VIBRATIONS OF SHORT WIDE-FIAANGED BEAMS WITH LONG ITUD INAL INERTIA, SHEAR DEFORMATION AND VIS- COUS DAMPING.
6.1 Introduction. 175
6.2 Derivation of equations of motion including viscous damping. 176
6.3 Solution for the case of a simply supported beam. 17 7
6.4 Response to a uniformly distributed torsional forcing function sinusoidal in time. $\cdot 183$
6.5 Free and forced vibrations of a classic beam 185
6.6 Discussion of numerical results. 187

Chapter - VII:	TORSIONAL WAVE PROPAGATION IN ORTHO-
$\frac{\text { TROPTC THIN-WALLED BEAMS OF OPEN SECTION }}{\text { INCIUDING THE FFFECTS OF LONGITUDINAL }}$	
INERTIA AND SHEAR DFFORMATION.	

7.1 Introduction.	$\ldots 10$.
7.2 Anelysis and Examples.	$\cdots 200$
7.3 Results and discussion.	$\ldots 207$

Chapter - VIII: TORSIONAL VIBRATIONS AND STABIIITY OF SHORT THTN-WALLED BEAMS RESTING ON CONTINUOUS BLASTIC FOUNDATION.
8.1 Introduction.
8.2 Derivation of coupled equations of motion including axial load and elastic foundation.
. 213
8.3 Natural boundary conditions.
.221
8.4.1 Single equation in angle of twist. .222
8.4.2 Analysis of various terms. ..223
8.5 Non-dimensionalization and general solution. .. 224
8.6 Frequency or buckling load equations and modal functions.
. . 228
8.6.1 Simply supported beam.

- 223
8.6.2 Fixed-fixed beam
. 233
8.6.3 Beam fixed at one end and simply suppor-
ted at the other. ted at the other. .. 234
8.6.4 Cantilever beam with one end fixed and
free at the other.
. 235
8.6.5 Cantilever beam with one end simply supported and free at the other.
.237
8.6.6 Beam with free ends. $\quad .238$
8.7 Approximate solutions by Gelerkin's teohnique. . 233
8.7.1 Fixed-fixed beam.
$\cdot 233$
8.7.2 Beam fixed at one end and simply supported
at the other.
8.8 Limiting conditions. - 242
8.9 Results and conclusions. 244
Qhapter - IX: FINITE ELTMENT ANALYSIS OF TORSIONAL VIBRATIONS AND STABILITY OF SHORT THIN-WALLED BEAMS RESTIVG ON CONTINU- OUS ELASTIC FOUNDATION.
9.1 Introduction. 263
9.2 Modified strain energy expression including the effects of axial load and elastic founda- tion. - 264
9.3 Modified natural boundary conditions 265
9.4 Derivation of element matrices including axial load, elastic foundation and second order ef- fects. - 263
9.5 Results and conclusions. - 270
Chapter - X: NON-LINEAR TORS IONAL STABILITY OF LENGTHY THIN-WALIED BEAMS OF OPEN SECTION RESTING ON CONTINUOUS ELA STIC FOUNDATION.
10.1 Introduction. 274
10.2 Development of governing differential equation and boundary conditions. 275
10.3 Simply supported beam. -•27910.4 Clamped beam... 281
10.5 Results and conclusions. 283
Chapter - XI: NON-LINEAR TORSIONAL VIBRATIONS AND STABILITY OF LENGTHY THIN-WALLED BEAMS OF OPEN SECTION RESTING ON CONTINUOUS ELASTIC FOUNDATION.
11.1. Introduction. 287
11.2 Derivation of governing differential equation 289
11.3 Simply supported beam.
.. 239
11.4 Clamped beam.
.. 292
11.5 Results and conclusions.
.. 294
Chapter - XII: SUMMARY AND RECOMMENDATIONS.
12.1 Conclusions.
.. 307

12. 2 Recommendations for future work.
-.. 314
REFERENGES.
.. 315

Abstract

ACKNOWLFEDGEMENTS

The author wishes to express his deep appreciation to Dr.P.K.Sarma, Ph.D. (Moscow), Professor of Mechanical Engineering for his supervision and encouragement throughout the course of the research work. The author sincerely thanks Prof.T.Vemgopala Rao, B.E., M.S.(Illinois), A.M.I.E., Head of the Department of Mechanical Engineering for the facilities provided. The author wishes to acknowledge the services of Sri Ramaiah in typing the manuscript and Sri E.Satyanarayana in preparing the graphs. The author thanks the Board of Research Studies, Andhra University, Waltair for having given free computer time.

Last but not the least, the author specially thanks his wife Smt. Venkata Ramana for her patience, understanding and forbearance throughout the period of this investigation.

NOMENCLATURE.

```
Dimensions and Sectional Properties:
\(\mathrm{A}=\) total area of cross section
\(A_{f}=\) area of each flange
\(b_{f}\), width of the bess each flange
\(c_{s}=\) torsion constant
\(C_{W}=\) warping constant
F \(=\) constant depending upon cross sectional properties, see
        Eq. (10.4)
\(h \quad=\) height between the centerlines of the flanges
\(I_{f}=\) moment of inertia of each flange about \(y\)-axis
\(I_{p}=\) polar moment of inertia of the cross section
\(I_{R}=\) fourth moment of inertia about the shear center, see Eq. (10.5)
\(I_{p c}=\) half the polar moment of inertia about the shear center
\(K^{\prime} \quad=\) numerical shape factor for cross section
I. = length of the beam
\(t_{f}=\) thickness of each flange
\(t_{w}=\) thickness of the web
\(S_{0}=\) statical moment with respect to noutral axis
\(z=\) displacement along the length of the bar
```


Material Propertiog:

```
\(\mathrm{E}=\) Young's modulus
\(\mathrm{E}_{z Z}=\) modulus for extension-compression along the axis of the bar
G. = shear modulus
```

$G_{z X}=$ shear modulus of orthotropio material
$\mathrm{K}_{\mathrm{t}}=$ foundation modulus in torsion
$P=$ mass denalty of the material of the beam

Forces, displacements and Moments:

$\mathrm{M} \quad=$ moment in each flange
$M_{y}=$ net bending moment in the cross section
P = axial compressive load
$P_{\text {cr }}=$ torsionel buckling load
$P^{* *}=$ post-buckling load
$q \quad=$ external $\mathrm{viscous} \mathrm{force}^{\mathrm{q}}$ per unit length acting along the sides of the flanges opposing warping
$Q \quad=$ shear force due to bending in the flanges
\mathbb{T}_{e} = external torque per unit length of the beam
$T_{0}=a$ constant equal to the static torque
$T_{s}=$ torsional couple
$T_{t}=T_{s}+T_{w}=$ total torque
$T_{\mathrm{w}}=$ werping torque
$u=x$-displacement of the top flange center line
w $\quad=z$-displacement of a point in the top flange
$\varnothing \quad=$ angle of twist
$\varnothing=$ normal function of \varnothing
$\varnothing_{s}=$ contribution of shear strain to the angle of twist
$\phi_{t}=$ angle of twist when shear strain has been neglected
$\psi=$ warping angle
$\bar{\psi}=$ normal function of ψ

Stresses and Strains:

$\sigma_{x}, \sigma_{y}, \sigma_{z}=$ normal stresses in x, y and z directions respectively $T_{z X}=$ maximum shear stress in flange bending
$\epsilon_{\text {sh }}=$ shear strain at the center of the flange, $x=0$
$\epsilon_{z}=z$-component of strain

Energies and Matrices:

$\overline{\mathrm{A}} \quad=$ transformation matrix for displacements whose elements are functions of x, y and z
$\overline{0}$ = transformation matrix giving the strains in terms of generalized displacements
$\bar{D}=$ matrix of material constants
F =total load matrix
$\overline{\mathrm{K}} \quad=$ total stiffness matrix
$\bar{M}=$ total mass matrix
$\bar{q}, \overline{\mathrm{R}}=$ column matrices of generalized displacements
$\bar{Q}, \bar{I}=$ oolumn vectors of amplitudes of generalized displacements
$\bar{S}=$ total stability coefficient matrix
$T_{k}=$ kinetic energy of the strained ber
$u=$ components of the displacement vector
$\mathrm{J}=$ total strain energy
$\mathrm{W} \quad=$ potential energy
$\overline{\bar{\sigma}}=$ matrix of stresses
$\bar{\varepsilon} \quad=$ matrix of strains

Non-dimensional Parameters:

$$
\begin{aligned}
& \bar{a}^{2}=1+g^{2} K^{2}-K^{2} / \lambda^{2} d^{2} \\
& d^{2}=I_{f} h^{2} / 2 I_{p} I^{2}=\text { Iongitudinel inertia parameter } \\
& K^{2}=G C_{S} L^{2} / E C_{W}=\text { warping parameter } \\
& r_{n}=\text { ratios of eigen values (} n=1 \text { to } 4 \text {) } \\
& s^{2}=E I_{f} / K^{\prime} A_{f} G I^{2}=\text { shear parameter } \\
& \bar{t}_{1}=\left(E C_{W} / P I_{p} L^{4}\right)^{1 / 2} t=\text { dimensionless time } \\
& z:=z / L=\text { non-dimensional beam length } \\
& \bar{\alpha}_{3}=E_{z Z} / G_{z X} \\
& \bar{\beta}_{3}=\left(C_{s}+1 / 2 K^{\prime} A_{f} h^{2}\right) / I_{p} \\
& \bar{\eta} \dot{q}^{-}=K^{\prime} A_{f} h^{2} / I_{f} \\
& \bar{\xi}_{2}=C_{s} / I_{p} \\
& \Delta 2 \\
& =P I_{p} I^{2} / \Lambda E C_{w}=\text { axial load parameter } \\
& \Delta_{\text {or }}^{2}=P_{o r} I_{p} L^{2} / A E C_{w}=\text { torsional buckling load parameter } \\
& \Delta_{c r}^{*: 2}=P^{*} I_{p} L^{2} / A E C \text { w }=\text { post-buckling load parameter } \\
& \gamma^{2}=K_{t} L^{4} / 4 E C_{W}=\text { foundation parameter } \\
& \lambda_{c}^{2}=1 / s^{2} d^{2}=\text { critical frequency parameter } \\
& \lambda_{n}^{2}=P I_{p} I^{4} p_{n}^{2} / E C_{w}=\text { frequency parameter } \\
& \Omega 2=2 I_{\mathrm{p}} / I_{p}
\end{aligned}
$$

$\delta^{*}=F / C_{W}$

Miscellaneous:

$$
\begin{aligned}
c_{0} & =\text { bar velocity }=\left(E_{z Z} / p\right)^{1 / 2} \\
c_{2} & =\text { shear wave velocity }=\left(G_{z X} / p\right)^{1 / 2} \\
c_{p} & =\text { phase velocity for torsional waves } \\
i & =\sqrt{-1} \\
n & =\text { mode number } \\
N & =\text { Number of segments into which the beam is subdevided } \\
p_{n} & =\text { natural frequency of vibration in radious per unit time. } \\
t & =\text { time } \\
T & =\text { linear period of torsional vibration } \\
T^{*} & =\text { non-linear period of torsional vibration } \\
X & =\text { normal function giving the shape of mode of vibration } \\
\alpha_{n}, & \alpha_{n}^{\prime}, \beta_{n}=\text { positive real quantities (n=1,2,3) } \\
\beta^{*} & =\text { torsional amplitude in non-linear analysis } \\
\beta_{t} & =\text { torsional damping constant } \\
\beta_{w} & =\text { warping damping constant } \\
T_{n} & =\text { torsional excitation function } \\
T & =\text { a function of time in norl-linear analysis } \\
\epsilon^{*} & =\text { error function } \\
\delta & =\text { variational operator } \\
\delta_{1} & =\text { wave number }=2 \pi / \pi \\
\omega & =\text { torsional excitation frequency }
\end{aligned}
$$

$\Lambda=$ wavelength
Salient symbols are listed above. Other symbols are defined in the body of the thesis as and when they appear.

Abstract

This thesis presents some analytical studies of linear and non-linear torsional vibrations and stability of uniform thinwalled beams of open section resting on continuous elastic foundation subjected to a time-invariant axial compressive load including the effects of longitudinal inertia and shear deformation.

Based on the Timeshenko torsion theory, the problem of linear torsional vibrations and stability of uniform lengthy thin-walled beams of open section resting on continuous elastic foundation subjected to a time-invariant axial compressive load is analyzed exactly by using the method of separation of variables. The frequency or buckling load and normal mode equations are derived for various end conditions. Approximate expressions are derived for the torsional frequency and buckling loads using Galerkin's technique. The results presented for some typical boundary conditions reveal that for lower modes, the increase in the foundation parameter increases the frequency parameter significantly and the increase in the axial load parameter decreases the frequency parameter considerably. The combined influence of axial load and foundation parameters is observed to be the superimposition of the individual effects on the frequency of vibration.

Finite element formulation of the problem of free torsional vibrations of thin-walled beams of open section resting on con-• tinuous elastic foundation is also presented. The stiffness and consistent mass matrices are derived and the eigen value problem

1s formulated. The eigen valuos obtained by inite-element method compared farourably well with the exact values even for a coarse subdivision of the beam into aix elements. A digital computer programme is written for obtaining the results for the frequenay parameter for various boundary conditions.

As the corrections due to second order effects may be of importance if the effect of cross sectional dimensions on frequencies of vibration are desired, an exat analysis is presentod for free toraional vibrations of ahort thin-walled berms of open section including the effects of longitudinal inertia and shear deformation. New frequency and normal mode equations are derived for six common types of simple and finite beams. Solutions of the frequency equations for some typical boundary conditions are obtained on a digital computer. The individual effects of longitudinal inertia and shear deformation on the torsional frequencies of a simply supported beam are shown graphically. The torsional frequency values and the modifying quotients for the first four modes of vibration for some typical boundary conditions are presented in tabular form suitable for design use in showing the combined effects of longitudinal inertia and shear deformation. Approximate frequency equations for some typioal end conditions are obtained using Galerkin's technique. It is observed that the effect of shear deformation is to decrease the stiffness of the beam and thus results in corresponding decrease of natural frequencies. The decrease is relatively small compared to the increase due to warping; however, the impor-
tance of shear deformation appears when higher frequencies are considered.

A finite-element formulation of the problem of free-torsional vibrations of short thin-walled beams of open section including the effects of longitudinal inertia and shear deformation is also presented. The corresponding stiffness and mass matrices including these second order effects are derived. The eigen values obtained by the finite element method compared very well with the exact values even for a coarse sub-division of the beam into three elements. A digital computer programme is written for obtaining the results for the frequencies and mode shapes for various end conditions.

The problem of forced torsional vibrations of thin-walled beams of open section is studied including the effects of longitudinal inertia and shear deformation. Viscous damping forces arising separately from torsional and warping velocities are inoluded. The two oouplod, fundamental equationa of motion are formulated in terms of angle of twist and warping angle. The method of solution is demonstrated for arbitrary external torque for the beam having both ends simply-supported. Numerical results are presented for the case when the torque is uniform over the span and varies sinusoidally in time. Amplitude response is plotted against torsional excitation frequency for varying amounts of torsional and warping damping and is compared to the response for the classic beam for the first five symmetric mode shapes. The amplitudes for the thin-walled beam including
shear deformation and longitudinal inertia are found to be considerably larger.

As the increased utilization of composite materials in structural applications has made their analysis ever more important, the problem of torsional wave propagation in orthotropic thin-walled beams of open section including longitudinal inertia and shear deformation is solved. The equation for free torsional Vibrations of thin-walled beams of open section of orthotropic material including the effects of longitudinal inertia and shear deformation is established analogous to that for isotropic materials. Many fiber-reinforced plastics and pyrolytic-graphite type materials which are mostly in use, are orthotropic or transversely isotropic in the sense that the ratio of in-plane modulus of elastioity to shear modulus is large. It is shown that, for these materials, the corrections due to longitudinal inertia and shear deformation may be of one order of magnitude greater than the corrections in the isotropic case. Graphs are given of the phase velocity versus inverse wavelength for various aspect ratios of beams of different materials.

The problem of torsional vibrations and stability of short thin-walled beams of open section resting on continuous elastic foundation and subjected to an axial compressive load including the effects of longitudinal inertia and shear deformation is solved by means of en exact analysis. Results for buokling loads for various boundary conditions are presented in tabular form
showing the effects of shear deformation. The values of torsional frequency parameter for the first four modes of vibration for various boundary conditions and non-dimensional parameters are presented in tabular form suitable for design use. This problem is also solved by means of finite-element method and an excellent agreement is observed between the results from exact analysis and those from the finite-element method.

It is very well known that a large number of problems of torsional vibrations and stability of thin-walled beams arising in modern high speed aircraft structures, missiles and launching vehicles cannot be adequately explained by the classical linear theories alone, since the torsional deformations of these beams are usually of such a magnitude that the assumption of small rotations of cross sections will no longer be valid.

In view of this, an attempt has been made further in this thesis to derive and solve the governing differential equation of large amplitude torsional stability of lengthy thin-walled beams of open seotion resting on continuous elastio foundation. Graphs indicating the combined influence of large amplitude and foundation parameter on the torsional post-buckling loads for simply supported and clamped beams are presented. Including the effects of axial compressive load and elastic foundation, the problem of non-linear torsional vibration and post-bucking behavior of thin-walled beams resting on continuous elastic foundation is also investigated.

LTST OF FIGURTS

S1. IIE.No,
Desoription
Page No.

1. Fig. 2.1 Differential element of an I-beam. .. 28
2. Fig. 2.2 Variation of r_{1} with A, for values of $K=0.1,1.0$ and $10.0(n=1) . \quad .44$
3. Fig. 2.3 Variation of r_{2} with γ, for $K=1.0$ for the first three modes of vibration. 45
4. Fig. 2.4 Variation of r_{2} with γ, for $K=10.0$ for the first three modes of vibration. $\cdot 46$
5. Fig. 2.5 Variation of r_{3} with \triangle and γ, for $K=1.0$
for the first fundemental mode of vibra-
tion.
$\quad .43$
6. Fig. 2.6 Variation of r_{3} with Δ and γ, for $K=10.0$ for the first fundamental mode of vibration.

- 49

7. Fig. 2.7 Variation of r_{4} with γ for values of $K=0.1$, 1.0 and 10.0.
8. Fig. 2.8 Values of frequency f oritical Buckling load parameters for a simpiy supported beam ($K=1, n=1$).
$\begin{aligned} & \text { 9. Fig. } 2.9 \quad \text { Values of frequency } \\ & \text { load parameters for a simply supported buckling } \\ & \text { beam }(K=10, n=1) .\end{aligned}$
9. Fig. 2.10 Values of frequency $\mathbb{4}^{2}$ oritical Buckling load paremeters for a fixed-fixed beam ($K-1, n=1$).
10. Fig. 2.11 Values of frequency critical Buck-
ling load parameters for a fixed-

fixed beam $(K=10, n=1)$.
$\begin{aligned} & \text { 12. Fig. 2.12 Values of frequency } \hat{f} \text { oritical. Buck- } \\ & \text { ling load parameters for a fixed- } \\ & \text { simply supported beam }(K=1, n=1) . \quad .6 l\end{aligned}$
13. Fig. 2.13 Velues of frequency \mathcal{q}^{2} oritical buckling loads for a fixed-simply supported beam ($K=10, n=1$).
14. Fig. 4.1 Geometry and forces on a differential element I section.
15. Fig. 4.2 Strained State of the element
(a) Front View
(b) Top View.
. .108
16. Fig. 4.3 Corrections in natural frequencies

of a simply supported beam owing to

longitudinal inertia for the first
17. Fig. 4.4 Corrections in natural frequencies of a simply supported beam owing to shear deformation ($\alpha=0$). $\quad .146$
18. Fig. 6.1 Strained state of a Beam Element. ..17\%
19. Fig. 6.2 Classical beam - Timoshenko Torsion Theory ($n=1$).
20. Fig. 6.3 Present Analysis $\left(\beta_{1}=10^{3}, n=1\right) . \quad \cdot 190$
21. Fig. 6.4 Present Analysis $\left(\beta_{1}=10^{4}, n=1\right)$. . 191
22. Fig, 6.5 Present Analysis $\left(\beta_{1}=5 \times 10^{4}, n=1\right) \ldots 192$

23	Fig. 6.6	Present Analysis ($\beta_{0}=0, n=1$).	.193
24	Fig. 6.7	Present Analysis ($\beta_{0}=400, n=1$)	.194
25	Fig. 6.8	Present Analysis ($\beta_{0}=800, n=1$)	. 193
26	Fig. 7.1	Phase velocities for Torsional Ha	
		in I-Beams ($\mathrm{b} / \mathrm{h}=0.50 ; \mathrm{t}_{\mathrm{f}} / \mathrm{h}=$	
		$\left.t_{W} / \mathrm{h}=0.025\right)$.	. 2118

27. Fig. 7.2 Phase velocities for Torsional Waves in I-Beams ($\mathrm{b} / \mathrm{h}=0.50 ; \mathrm{t}_{\mathrm{f}} / \mathrm{h}=0.040$ $\left.t_{w} / h=0.025\right)$.
28. Fig. 7.3 Phase Velocities for Torsional Waves in I-Beams $\left(b / h=0.25 ; t_{f} / h=0.025\right.$ $\left.t_{w} / h=0.020\right)$.
29. Fig. 7. 4 Phase Velocities for Torsional Waves in I-Beams ($\mathrm{b} / \mathrm{h}=0.25$; $\mathrm{t}_{\mathrm{r}} / \mathrm{h}=0.025$; $t_{w} / h=0.020$).
. 211
30. Fig. 7.5 Phase Velocities for Torsional Waves in I-Beams ($b / h=0.75 ; t_{f} / h=0.050 ;$ $\left.t_{w} / h=0.040\right)$.
31. Fig. 7.6 Phase Velocities for Torsional Waves in I-Beams ($b / h=0.75 ; t_{f} / h=0.050$; $t_{W} / h=0.040$).
32. Fig. 7.7 Phase Velocities for Torsional Waves in I-Beams $\left(b / h=1.00 ; t_{f} / h=0.10\right.$; $t_{W} / h=0.050$).
33. Fig. 7.8 Phase Velocities for Torsional Waves

$$
\begin{align*}
& \text { in I-Beams }\left(b / h=1.00 ; t_{f} / h=0.10 ;\right. \\
& \left.t_{w} / h=0.050\right)
\end{align*}
$$

34. Fig. 10.1 Effect of elastio foundation on the torsional post-buckling behavior of simply supported thin-walled beams of open section.
-291
35. Fig. 10.2 Effect of elastic foundation on the torsional post-buckling behavior of clamped thin-walled beams of open section.
36. Fig. 11.1 Influence of Iarge Amplitudes on period of Non-linear torsional $\nabla i b-$ ration of a steel I-beam.
37. Fig. 11.2 Influence of Iarge Amplitudes on period of Non-linear torsional vibration of 36 WF 230 standard steel I-beam.
38. Fig. 11.3 Influence of Large Amplitudes on period of Non-linear torsional vibretion of 24 WF 130 standard steel I-beam.
39. Fig. 11.4 Influence of Large Amplitudes on period of Non-linear torsional vibration of clamped I-beams.
40. T1g. 11.5 Influence of Large amplitudes on period of Non-Iinear torsional vibration of a simply supported I-beam for various values of A and $-8=0.0 \ldots 293$
41. Fig. 11.6 Influence of Large Amplitudes on period of Non-linear torsional vibration of a simply supported I-beam for values of 8 and $\Delta=2.0$.
42. Fig. 11.7 Influence of Large Amplitudes on period of Non-linear torsional vibration of a Simply Supported I-beam for various values of γ and $\Delta=6.0 \ldots 342$
43. Fig. 11.8 Influence of Large Amplitudes on period of Non-linear torsional vibration of a clamped I-beam for various values of Δ and $\gamma=0.0$.
44. Fig. 11.9 Influence of Large Amplitudes on period of Non-linear torsional Vibration of a clamped I-beem for various values of $\hat{\gamma}$ and $\Delta=2.0$.

- 304

45. Fig. 11.10 Influence of Large Amplitudes on period of Non-linear torsional vibration of a clamped beam for various values of γ and $\triangle 6.0$. $\quad 30 \bar{j}$

IIST OF TABLES

S1. Table No.
Description.
Page No.

1. Table 2.1 Comparison between exact and approximate values of λ^{2} for the first mode of vibration of fixed-fixed thin-walled beams ($K=1.0$) .
2. Table 2.2 Comparison between expot and approximate velues of λ^{2} for the first mode of vibration of fixed-simply supported thinwalled beams ($K=1.0$).
3. Table 3.1 Values of the frequency parameter λ^{2} for

- simply supported thin-walled beams of open section on Elastic foundation for various values of foundation parameter \% for a value of warping parmmeter $K=1 . \quad .90$

4. Table 3.2 Values of the frequency parameter λ^{2} for simply supported thin-walled beams of open section on Elastic foundation for various values of foundation parameter γ for a value of warping parameter $k=10$. . 92
5. Table 3.3 Values of the frequency parameter λ^{2} for simply supported thin-walled beams of open seotion on Elastic foundation for various values of foundation parameter γ for a value of warping parameter $\mathrm{K}=0.01$. 94
6. Table 3.4 Values of the frequency parameter λ^{2} for finply supported thin-wailed beams of open section on Elastic foundation for various values of foundation parameter for a value of warping parameter $\mathrm{K}=0.100$.
7. Table 3.5 Values of the frequency parameter λ^{2} for fixed-fixed thin-walled beams of open section on Elastic foundation for various values of foundation and warping parameters γ ' and \mathbb{K} respectively ($\mathrm{N}=6$) 。
8. Table 3.6 Values of the frequenoy pernmotor λ^{2} for free-free thin-walled beams of open section on Elastic foundation for various values of foundation and warping parameters ${ }^{-\gamma}$ and K respectively ($N=6$)... 97
9. Table 3.7 Values of the frequency parameter λ^{2} for simply supported beams for various values of axial load parameter Δ and foundation parameter γ for a value of $K=1$.
10. Table 3.8 Values of the frequency parameter λ^{2} for fixed-fixed beams for various values of axial load parameter A and foundation parmater γ for a value of $K=1$.

11. Table 5.1 Comparison of first and second sets ofvalues of λ^{2} from the Finite elementmethod and those from exact analysis givenin Chapter IV for a simply supported beem($K=1.541, s=0.046, d=0.023$) .172
12. Table 5.2 Comparison of the first set of values of λ^{2} from the Finite element method and those from exact analysis given in Chapter IV for a fixed-fixed beam ($K=1.541$, $s=0.046, d=0.023$)
13. Table 6.1 Values of the natural frequencies and maximum total torsional amplitudes for various modes of vibration of a simply supported beam.
14. Table 8.1 Effects of shear deformation and elastic foundation on the torsional buckling loads of simply supported, clamped-clamped and clamped-simply supported thinwalled beams of open section.
15. Table 8.2 Effects of axial compressive load, longitudinal inertia and shear deformation on the first four torsional frequencies (first set) of simply supported thinwalled beams $(Z=0, K=0.01$ and $s=2 d) \ldots 246$
16. Table 8.3 Effects of elastic foundation, longitudinal inertia and shear deformation on the first four torsional frequencies (first set) of simply supported thin-walled beams $\Rightarrow \quad \Delta=0, K=0.01, s=2 d)$.
17. Table 8.4 Combined effeots of axial oompressive load and elastic foundation in combination with longitudinal inertia and shear deformation on the first and second mode torsional frequencies (first set) of simply supported short thin-welled beams ($K=0.01$, $s=2 d$).
18. Table 8.5 Combined effects of axial compressive load and elastic foundation in combination with longitudinal inertia and shear deformation on the third and fourth mode torsional frequencies (first set) of simply supported short thin-walled beams ($\mathrm{K}=0.01, \mathrm{~s}=2 \mathrm{~d}$) .
19. Table 8.6 Effects of axial compressive load, longitudinal inertia and shear deformation on the first four torsional frequencies (first set) of clamped-simply supported thin-walled beams ($\gamma=0, K=0.01, s=2 d$) .250
20. Table 8.7 Effects of elastic foundation, longitudinal inertia and shear deformation on the first four torsional frequencies (first set) of clamped-simply supported short thin-walled beams $(i=0, K=0.01$, $s=2 \mathrm{~d}$) .
21. Table 8.8 Combined effects of axial compressive load and elastic foundation in combination with longitudinal inertia and shear deformation on the first and second mode torsional frequencies (first set) of clamped-simply supported short thin-walled beams ($K=0.01, s=2 d$). . 259
22. Table 8.9 Combined effects of axial compressive load and elastic foundation in combination with longitudinal inertia: and shear deformation on the third and fourth mode torsional frequencies (first set) of clam-ped-simply supported short thin-walled beams ($K=0.01, s=2 d$).
23. Table 8.10 Effects of axial compressive load, longitudinal inertia and shear deformation on the first four torsional frequencies (first set) of clamped-clamped short thin-walled beams $(\gamma)=0, K=0.01, s=2 d) .251$
24. Table 8.11 Effects of elastic foundation, longitudinal inertia and shear deformation on the first four torsional frequencies (first set) of clamped-clamped short thin-walled beams ($\Delta=0, K=0.01$, $s=2 d$) ..
25. Table 8.12 Combined effects of axial compressive load and elastic foundation in combination with the longitudinal inertia and shear deformation on the first and second mode torsional frequencies (first
set) of clamped-clamped short thin-walled beame $(K=0.01, \quad: 2 d)$.
26. Table 8.13 Combined effects of axial compressive load and elastic foundation in combination with longitualmat inortia and ghona deformation on the third and fourth mode torsional frequencies (first set) of clamped-clamped short thin-walled beams ($K=0.01, s=2 d$).
27. Table 8.14 Effects of axial compressive load, elastic foundation and warping in combination with longitudinal inertia and shear deformation on the first four torsional frequencies (first set) of simply supported thinwalled bermo ($s=0.10, d=0.05$).
28. Table 8.15 Effects of axial compressive load, elastic foundation and warping in combination with longitudinal inertia and shear deformation on the first four torsional frequencies (first set) of clamped-simply supported short thin-walled beams ($s=0.10, d=0.05$)
29. Table 8.16 Effects of axial compressive load, elastic foundation and warping in combination with longitudinal inertia and shear deformation on the first four torsional frequenoies (first set) of clemped-clamped short thin walled beams $(s=0.10$ and $d=0.05) .260$
30. Table 9.1 Comparison of first set of values of
λ^{2} for various values of Δ and γ
from the Finite Element method and those
from exact analysis given in Chapter VIII for a slmply supported beam ($K=1.541$, $s=0.046, d=0.023)$.
31. Table 9.2 Comparison of second set of values of λ^{2} for various values of Δ and γ from the Finite Element method and those from exact analysis given in Chapter VIII for a simply supported beam ($K=1.541$, $s=0.046, d=0.023$).

1

CHAFPER - I

INTRODUCITON.

1.1. GMMERAL:

While
In an effort to save weight still retaining high strength capabilities, many contemporary structural systems are designed with lower margins of safety than their predecesaors. The criterion of mininum weight doaign in partioulariy prevalent in the design of aircraft, missile, and space craft vehicles. Ons obvioue means of obtaining a high strength, minimum weight design is the use of light, thin-walled structural members of high strength alloys. For intricate structures such as space-crafts, beans of standard cross section may not be the most efficient or convenient structursal members to use. Thin-walled beams of open section are frequently employed for their structural efficiency. With the improvement of extrusion methods in metal foming, beams of affferent shapes of cross sections can be fomed to order. Oecasions often arise when uniform doubly symmetric cross sections are more convenient to use. Examples of such structural members that have gatned great favour as stiffeners in aerospace design are the I, Z, Chamel and ancle sections.

Although no attempt has been made in the previous paragraph to regorously define a thin-walled beam, it is neeessary to do so in order that one fully understands its meaning when used in ensuing discussion. A reotangular beam as a structurel member is characterized by having two dimensions, the width and

2

dopth of tho orose aotion of oonparable alee but small in oomperision with the third dimension, the length. A thin-walled beam, on the other hand, is characterized by its three dimensions being of different ordore of macnitude. The thickness of the beam is small compared to the characterestic dimensions of the cross section, and the orobe geotional dimensions are small oompared to the leneth of the beam.

It has long beam known that a beam with nonsymaetrical cross section puder loada will, in general, not only daflects but also will, twiat. Only under apeodal loadine along the flexure axis, a line joining the shear conters, will the beam deflect without twist. The concept of shear center is well known and is discussed in text books. Essentially, it is a point through which the resultant of the shear forces of the cross section passes. If the loading does not pass through the shear center, a torque is generated by the loading and the resultant of the reactions from the section. Such a torque will cause the twisting of the beam. When a thin-walled beam is subjected to dynamic excitation, the inertial loading due to acceleration of the beam itself has to be taken into account. The resultant of such loading may be considered to pass through the centroid of the section. Unless the shear center of the section ooinoides with its centroid, both bending and toreional vibrations will reault. Due to the low torsional rigidity of thinwalled open section beams, the problem of torsional vibrations and atability is of primary interest.

1.2. RRIEF REVIEN OF RRLMVANY IITARATURE:

Extensive research has been conducted in the field of thin-walled structural members whioh has been woll. documented in the iftersture; and detailed bibliographies are already available. Therefore, only a brief survey of the development of the existing literature directly related to the present investigetion will be included here.

1.2.1. ELASTIC STABILITY:

Since the eighteenth contury investigation of colum instability by Euler, a greet wealth of information has been documented concerning the nature of instability. For instance, the ingtability of columns, beam-columns, plane frames, trugses, plates, and shella have been the objeots of many research offorts. Although the indifidual investigations are too numerous to cite, several texts have appeared that provide excellent anthologies for these investigations.

Derivation of the fundarental theory of strength and stability of thin-walled members was performed by Goodier, Timoshenko, Nasov and others. 中imoshenko (95) inftiated the concept of non-uniform torsion when he considered warping of the cross sections of a symmetrical I-bean subjected to torsional moment. Wagner (//O) generalized the Timoshenko torsion theory. Goodier (36,27) published a series of studies in which he simplified and proved some of the essumptions proposed by earlier investigators. Theories of lateral stability
and flexural-torsional stability of uniform thin-walled beams, upto 1945, were unified by Timoshenico (98). Vasov's (/0) extensive investigations of thin-walled elastic members were published in book form in 1940. A new edition containing comprehensive study of equilibrium, stability, and Vibration of thin-walled members of arbitrary cross sections was published in Ruseian in 1958 and tranglated into English in 1961.

Two other olessical text books dealing with the stability of members were published by Bleich (13) in 1952 and Timoshenko and Gere (99) in 1961. Most recent is Ziegler's monograph (i/4), in 1968, on structural stability in which he emphasizes the conceptual aspects of the more recent developments of atability theory. Surveys of the theory of thin-walled members, which include numerous references, were performed by Nowisinki (87) in 1959, Panoviko (89) in 1957 and Yi-Yuan, Yu (//3) in 1971. A survey of Iiterature on the lateral instability of beams was made in 1960 by Lee (7.3). The effect of axial stresses, arising from combined bending and torsion of thin-walled beens, on the torsional regidity of the beam was investigated by Goodier (38) in 1951 and Engel (29) in 1953.

In 1944, Goodier and Barton extenied Timoshenko's theory of non-uniform torsion of an I-bean to include not only the benaing of the flenges in their own planes but also considered the effect of web deformation on the toraion of the beam ($\mathbf{3 5}$). Further inve日tigation of this effect including experimental work was performed by several researchers. The Goodier-Barton effect
was found to be of eignifioant importance for the case of plate girders whose cross sections were such that the ratio of the flenge thiokness to the web thickness was large or if the length of the web was much larger than the lergth of the flange (35 , $7 /$).

Gregory (42) in 1961, proposed a theory which considered a non-linear longitudinal stress system in members aubjected to large elastic torsional diaplacements. Gregory's theory was developed by Black ($/ / / 1 /$) in 1965 and in 1967, in a theoretical and experimental study of monosymetric thinwalled beans subjected to bending and torsion. Approximate solutions of a modified non-linear equetion were compared with the experimental results and also with the theories of Timoshenko (98) and Goodier (38). A continuous effort has also been made to close the gap between structural theory and engineering codes of practice $(G, 1,1 / 2)$. Recent research studies of interest to designs and research workers are presented in a collection of papers, published in 1967, on the stability and strength of thin-walled structural members and frames (/6).

The influence of second order effects such as distortion of the column cross section, large displacements, shear deformation, residual stress and initial deflections on the behaviour of blaxially loeded columns fs evaluated by Culver (22) in 1965. Numerical calculations, incluaing these second order effects, indicated that problems exist for which these effects are considerable. Second order effects influencing biaxially
loaded columns were discussed by Goodier (40) and Heilig (44) and these offects inoluded oross seotional distortion due to torsion and shear deformations.

Tapered thin-walled beams are of interest in optimum design. Gere and Carter (33) obtained the critical buckling loads for tapered columns. A finite element formulation using Gelerkin's method for the buckling problem of tapered members was presented by Morrel and Lee (\hat{B})). The elastic stability of axially loaded tapered columns has been studied analytically by several investigators (27,80). The problem of torsional buckling of axially loaded tapered columns of wide-flenged cross section has been recently studied analytically by Culver and Preg (23), using finite-difference method. In addition, the differential equations for the general case of tapered wideflanged beam-columns have been derived using the Vlasov's method (/07) for uniform beams. The determination of the initial yield load for tapered beam-columns has also been investigated (30). An experimental investigation of the elastic stability of tapered beam-columns has been reported (is). Lee (74) presented an analysis of non-unfform torsion of tapered I-beams in 1956, the taper being only of a restrictive type.

All the above investigations and a host of others treat the torsional or flexural - torsional buckling problems from a purely mathematical approach. Such an approach includes the solution of a trio of coupled differential equations of equili, brium (these equations may be uncoupled under some instances)
for columns of various cross sections, loadings and boundary conditiong. This approach provides one with exact solutions (mathematioally spealking) for a given problem. One shortcoming of such an approach is that due to the complex nature of the equilibrium equations suchimethematioal difficulties as non-uniform members, complex loadings, or arbitrary boundary conditions can not be easily handled.

To complement the known exact solutions, attempts have been make to ootain approximate solutions to the more difficult (again, mathematically speaking) problems. The technique used to obtain the approximate results is the method of finite or discrete element technique. Many of the early advances in the finite element method were presented in technical journals, but recently texts by Przemieniecki (93) and Zienkiewicz (//S), have appeared that summarized various investigtions utilizing this modern technique. These texts cover such varied topics as plane stress, plane strain, axisymmetric stress analysis, three dimensional stress analysis, bending of beams, plates and shells, vibrations of elastic systems, ancl struotural stability.

Using the finite-element technique, Krajcinovic (6 f) developed a formulation for thin-walled members based on the use of hyperbolic functions to express the twist. These functions, which are the solution to the exact differential equation for twist, lead to complicated stiffness expressions in torsional and warping constants. It does not include the effects of instabilities due to torques. Hence, its applicability to general frame instability is Iimited. Kabaila and Fraeijsde Venbeke (46)
formulated a finite-element model that considers only axial forces in the stability analysis. The formulation is only applioable to solid boams whore the shoar oontor oolnoldoe with the center of gravity. It neglects warping rigidity, which is of major importance in the analysis of thin-walled members (98). A linear formulation was used to express the twist, as was done earlier, by Przemieniecki (1.3). The finitetelement method has been shown, by Pardoen (90), Barsoum ($i, 8$) and Barsoum and Gallangher (7) to be completely general in that it proVides one with a means of solving problems involving arbitrary loading and boundary conditions. Although, only an approximate method, the finite-element method has provided results that are suffioiently acourete for engineerine purposes.

1.2.2. VIBRATIONS AND WAVE-PROPAGATION:

For the past three decades mechanical vibrations have been recognized as a major factor in the design of air craft, marine and machine structures. Mechanical vibrations produce increased stress, energy loss and noise that should be considered in the design stages if these undesireble effecta are to be avoided, or lept to a minimum. This is essentially true in the area where the total mass of the system is to be held to a minimum. Vibratory motion can produce very disastrous results as in the case of either the Tacoma narrows bridge which fell because the wind excited it at a natural frequency, or the illfated Electra I Commercial air craft that encountered severe engine vibration which required major modification of air craft.

9

The important point to be noted is that too often vibrations are investigated after, instead of before, the failure has occured.

Several investigators have been concerned with the $\nabla i b-$ ration of beams and the purpose herein is to review some of the relevant contributions in this area. The most desirable techniqua for analyzing vibratory motion is the regorous mathematical solution obtainod from a formal solution of the differential equations desoribing the motion. Timoshonloo (for) investigated the coupled torsional and transverse vibrations of a simply supported beam having a constant channel cross section. He_{e} considered only the simply supported beam and by assuming a product form solution wers able to obtain an algebraic frequency equation. This technique is limited to only those cases in which it is possible to assume a solution for the mode shape that satisfies the physical constraints of the beam. Gere (3.2) studied the torsional vibration of beams with doubly-symuetrio cross section for which the shear center and centroid coincide and analyzed the effect of warping on the frequencies of torsional vibration and the shapes of the normal modes of vibration for bars of sinele span with varinurs end conditiona. Gere and Lin (34) generalized the theory of vibrations of thin-walled bammaf arbitirary nomanablion.

The above oited references presentod clnasionl mathematioal solutions for the beam vibration problems. Fherever possible the use of these formal mathematical solutions is highly recomended because they are the simplest and most direct methods
of predicting vibratory characterestics. However, it should be noted that each of these formal solutions has very definite Imitations because they have been obtained for a specific type of beam and are not applicable to the general case. Since there had not been developed a rigorous mathematical technique that will solve all types of beam vibration problems, it was only natural that various approximate techniques have been developed to fill in the gaps left in the formal solutions. One of the most powerful techniques developed was the Rayleigh-Ritz method which is an energy principle that in the absence of frictional losses, the total vibratory energy of a vibrating body must continuously change from all strain energy and no kinetic energy to all kinetic energy and no strain energy, and the frequency of change must be a natural frequency.

The first step in the application of the Rayeigh-Ritz method is to assume a possible model shape of the beam corresponding to the lowest frequency. Then it will be possible to calculate the maxinum strain energy in the beam. By considering that the assumed mode shape is periodic in time the maximum kinetic energy can be obtained. When the two energies are equated, it is possible to solve for the frequency. Succeeding possible mode shapes must be assumed until the lowest calculated frequency is obtained. This technique converges only to the lowest natural frequency of the system. The higher natural frequencies can be obtained only by using the orthogonality property that exists between the mode shapes. A complete discussion of the Ralleigh-Ritz technique is presented by Temple
and Beckley (96).
Gariana (. 11) used the riflolghmatita mothod to invosm. tigate the coupled torsional and transverse vibration of cantilever beams having constant channel cross section. He was able to observe that for any one transverse mode of vibration there will be two torsional modes and that the coupled natural frequency can be expressed as functions of the uncoupled transverse and uncoupled torsional frequencies. Timoshenko (100) was also able to make this observation for a simply supported channel cross-section. Garland was able to obtain a remarkable degree of correlation between the predicted and the experimentally measured results. Because he was dealing with only the lowest natural frequencies, he was not in requirement of the use of the orthogonality condition that would be necessary for obtaining the higher natural frequencies.

Bennett (9) developed an improved matrix technique for investigating the vibratory characterestics of a beam having a plane of symmetry perpendicular to the plane of transverse vibration. For a beam having a non-collinear longitudinal mass and shear center axes, there will be a coupling between the transverse and torsional vibrations. The coupling is produced when the reversed effective force caused by the transverse vibration does not act through the shear center of the crosssection. To date there has not been developed a rigorous mathematical solution for all possible variations in cross section, loading conditions and methods of support. Several authors

12

have solved the equations by imposing specific limitations on the method of support or on the variation of the cross section. Some researchers have used an energy method or an iterative method to approximate solutions where the formal solution does not exist. These approximate methods have a tendency to become very tedious. The technique of investigating the higher natural frequencies introduces complexities that are difficult to understand physically. The matrix method proposed by Bennett (9) is valid for any loading conditions or method of support. In his work, three different types of beam vibrations are considered, coupled torsional and transverse, transverse alone and torsional alone. The governing differential equations were solved approximately by using a digital computer and results obtained are observed to be within the range of engineering accuracy.

Another approximate but more elegant technique is the finite-element technique which provides one with solutions for any general set of boundary conditions and the variation in the cross section. This technique has been successfully used by Mei ($77,7 \%$) for the solution of the coupled bending-torsion vibrations of thin-walled beams of open section and non-linear flexural vibrations of rectangular beams. Pardoen (4O) and Barsoum (6) presented satisfactory solutions for the vibration and dynamic stability problems of thin-walled beams of open section utilizing the finite-element method. Although the finite-element technique has been used to predict the natural frequencies and mode shapes of berms, the method has yet to be
extended to consider the torsional vibrations and stability of thin-walled beams of open section resting on continuous elastic foundation.

Stress wave propagation in elastic solid media have been subjected to analysis since the early investigations of poisson (()) . Recent developments have been motivated by the ever increasing need for information concerning the response of structures to high dynamic loads. Ihe beam as a fundamental element of structures, received the first attention of investigators in the fleld. The early work of Pochhammer (11) and Chree (17) on the circular cylindrical bar with traction-free surface was re-examined in the early 1940's but progress was slow on account of highly intricate transcendental frequency equations resulting from dispersion due to the presence of boundaries. The first three modes of longitudinal and flexural wave transmission were not known untill found by Davies (L..) in 1948 and Abramson (/) in 1957 .

The complexity of the exact analysis even for simple geometry of a circular cylindrical bar, emphasized the need for physically satisfactory approximate theories. To satisfy engineering requirements, these theories should be good for short wave lengths which occur in problems of steep transients or high frequency oscillations in bars. The elementary classical theories of Navier for longitudinal vibrations, BernoulliEuler for flexural vibrations and Coulomb for torsional oscillations were reviewed and with the exception of the latter, were found to lead to physically impossible results (71). As a
consequence, emphasis was placed on developing more accurate approximate theories for longitudinal and flexural vibrations.

Although Timoshenko (101) in 1921 proposed a theory for flexural oscillations which included the effects of shear deformation and rotary inertia, it was not until the last decade that the Timoshenko theory was really put to experimental and analytical tests. During this. period, in addition to a lot of allied literature on exact theories of plates, and over a dozen of books, monographs and surveys, not less than fifty papers appeared dealing with approximate theories. These papers included new theories; their mutual comparison, comparision with the known information from exact theories and experiment. The Timoshenko theory for flexural waves and the Mindiln-Heryman theory ($8 /$) for longitudinal waves were found most satisfactory. The rest of Literature with the propagation of pulses is based on these theories. Brief details have been previously summarized by Kolsky (67), Abrahmson, Plass and Ripperger (2), Green (4/), and more recently by Redwood (89) and Miklowitz (80

However, comparable torsional oscillation analysis was virtually neglected and not more thon four to five papers on the topic have been published. The reason is the fact that Coulomb olassical theory gives the same first-mode results as the exact theory. The available infomnation is almost limited to the circular cylindrical bar. Thus, there exists a lack of satisfactory approximate and exact theories for torsional wave propagation in non-circular bars, especially these used in structural applications. Very often thin-walled beams of open section are used as structural members in light weight aircraft
and building oonstruotion. These members usually fail under torsion or combined bending torsion because of their low torsionaly rigiaity which maleas them furoentible to torsional buakling. A self-contained and oomprehensive acoount of bending and torsion of thin-walled beams of open section was given in a paper publíshed by Timoshenko (48) in 1945. As structural membere may be subjected to resonant vibrations under dynamio loads, it is necessary to study their torsional properties in order to understand their response to torsional excitation.

The inadequacy of a Saint-Venant elementary torsion theory for short wave lengths was hinted at by Love (7b), who suggested a correction for the longitudinal inertia associated with torsional deflection. However, both the elementary
 their counterparts in longitudinal wave-propagation theory. The dynamio equation used by Gere (3 ?) in his torsion analysis was essentially that previously derived by Timoshenko (98) and he studied the effect of warping of the cross-section on the frequencies of vibration. These equations arocalied the Timoshenko Torsion theory in the sequel and are found to lead to physically absurd results for short wave length waves.

To present a much needed practical engineering theory, a strength of materials theory is is derived and analyzed by Aggarwal (3) in his thesis, including the effects of shear deformation, longitudinal inertia and warping of the cross-section. At high frequencies and short wave lengths a new mode of the wave transmission is added. This arises from the coupled inte-
raction of the torsional deformation and bending effects of shear deformation and longitudinal inertia. The Aggarwal's theory lead to theoretionily satisfactory resulta for the first mode of tranmisgion over a wave length spectrum wich included moderately short wave lengths, and agrees with previous approximations for large wave lengths. The group velocity for the second mode is shown to increase monotonically from zero for the longest waves to the bar velocity for very short wave lengths, which is in agreement in form with the higher modes of the exact theory for circular cylindrical bars ($54,2 S^{\circ}$). In many respects the analysis of Aggarwal's theory proves to be analogous to that of IImoshenko's flexural theory (lot).

The transient response arising from a step torque applied impulsively at the end of a semi-infinite I-beam is analyzed by Aggarwal (3) and the non-dimensional equations are wer solved using Laplace transforms and a closed form solution in integral form is obtained. For the sake of comparison, he solved the same impulsively applied step torque problem according to the Timoshenko torsion theory. He also analyzed the problem of free and fofed vibrations of I-beams according to his theory which includes the effects of longitudinal inertia and shear deformation. He noticed a completely new spectrum of natural frequencies at higher frequencies due to the interadtion between torsion, shear deformation and longitudinal inertia effects The frequency equations and expressions for model functions areh derived for a number of cases but he limited the discussion regarding the existence of the second frequency spectrum only
to the case of the simply supported beam because of the highly transcendental nature of the frequency equations which further include the parameters of warping, shear and longitudinal inertia. The frequencies obtained according to his theory are we compared with those previously obtained by Gere (32) who use the Timoshenko torsion equation. The shear effect is shown to result in a decrease of beam stiffness and corresponding decrease of natural frequencies. Though, the decrease wir relatively small compared to the increase due to warping; the influence of shear deformation "is observed to be considerable at higher frequencies. Further, Aggarwal (.3) established an Orthogenality relation for the principal modes of vibration and tronted the problem of forced vibrations under very general loe

Where as Aggarwal's contribution was limited to an improvement of the previous theories of uncoupled torsional vibre tions, Tso's contribution (104) was in the field of coupled torsional and bending vibrations of thin-walled beams of open section. In his thesis, Tso (104) derived a higher order theo including the effect of shear strain induced by bending and war ping of the beam. He compared the spectrum curves of the highe order theory with those from the elementary theory for various boundary conditions for a special family of non-symmetric sections. He performed an experiment on two specimens to determin their natural frequencies at different beam lengths and compared the experimental results with those predicted from the two theories. He has concluded that when the beam is long, the ele mentary theory is adequate to predict the natural frequencies
for torsion predomenant modes. For bending predominant modes, the highor order theory should be usod. The highor order theory derived by Tso (104) serves also as a guided for the range of validity of the elementary theory. In the experimental observations, he found certain non-linear behaviour of the thin-walled beam. Under special circumstances, when the beam is excited at resonance at a higher mode, he observed a tendency for the beam to shift from the higher resonant mode to vibrate at.its fundamental mode, resulting in a higher order subhormonic oscillation. Hence he made an analysis to show the possibility of such a behaviour if the inherently non-linear governing equations for coupled torsional and bending vibrations are used.

Recently In 1967, Aggarwal and Cranch (4) published a paper as an extension to the work of Aggarwal (3), by including an analysis for the coupled bending-torsional vibrations of a channel beam. The equations governing the motion of the channel beam are derived using Hamilton's principle and include the effects of warping, longitudinal inertia and shear deformation. These equations explicitly resemble those derived by Tso (104) for the more general case of mono-symmetric thinwalled beam of open cross section. However, the approach of Aggarwal and Cranch seems to be different from that of $T_{s o}$. Whereas \mathbb{T} so, analyzed the vibrations of a monosymmetric thin-
 Cranch for the case of an I-beam and a channel beam.

A more genoral thoory of vibritione of oylindriond tubes whioh inoludes the secondary effects such as transverse

19

shear, longitudinal inertia and shear lag was presented by Krishnamurthy and Joga Rao (70). They also brought out the analogy between the flexural and torsional vibrations of doubly symmetric tubes. In Part IV of their theory (70), results for simply supported open tube of doubly symmetric I section were presented. The other boundary conditions were not analyzed.

1.3. AIM AND SCOPE OF THE PRESENT INVESTIGATION:

In the above investigations ($34,7,701$,) on the torsional vibrations of thin-walled beams of open section including the second order effects such as longitudinal inertia and shear deformation, only regorous mathematical solutions are attempted. This approach actually limited their solutions only to simple end conditions such as a simply supported beam. Stating that, the frequanoy equations axo highly transoondontal in nature,
 ditions other than the simply supported ends. However, with the advent of high speed digital computers, it is not too difficult to obtain the solutions for these transcendental frequ= ency equations.

The present thesis aims at developing exact and approximate methods of analysis to tackle various boundary conditions without much difficulty. An attempt has been made, to extend • the previous discussions on torsional vibrations and stability analysis of thin-walled beams of open section, to include the effects of axial compressive load, continuous elastic foundation, longitudinal inertia and shear defornation by making use of exact
and approximate methods of analysis. A non-linear analysis is also made to study the influence of large torsional amplitude on the non-linear period of vibration. Further, the effecta of axial compressive load and continuous elastic foundation on non-linear torsional behaviour of thin-walled beams of open section are also investigated.

In particular, Chapter II deals with the analysis of torsional vibrations and stability of lengthy uniform thinwalled, beams of open section resting on continuous elastic foundation and subjected to a time-invarient axial compressive load by means of exact and approximate methods. A finite-element formulation for the same problem which is useful both for uniform and non-uniform beams is presented in Chapter III. The comparison between the results from the exact analysis and approximate finite element method is shown to be excellent even for a coarse sub-division of the beam.

In Chapter IV, an exact analysis is presented for free torsional vibrations of short uniform thin-walled beams of open section including the effects of longitudinal inertia and shear deformation. Expressions for orthogonality and normalizing conditions for the principal normal modes which are useful in solving forced vibration problems and which include both the angle of twist and warping angle are obtained for both the general case and for beams with various simple end conditions. To ux by fescilitate, the designers, extengive design data pertaining to

21

wide-flanged I-beams with various end conditions is presented. Also, approximate frequenoy equations for clamped and clampedsimply supported beams are derived making use of the Galerkin teohnique. A finite element formulation of the problem is presented in Chapter V. New stiffness and mass matrices are presented which included the effects of longitudinal inertia and shear deformation. The results obtained by the finite element method are in good agreement with the exact ones.

An analysis for the forced torsional vibrations of thinwalled beams of open section including the effects of longitudinal inortia, shear deformation and visoous damping in givon in Chapter VI. Chapter VII doals w.ith the problem of torsional wave propagation in orthotropic thin-walled beams of open section including the effects of longitudinal inertia and shear deformation.

In Chapter VIII, the problem of torsional Vibrations and stability of short uniform thin-walled beams resting on continuous elastic foundation and subjected to an axial static compressive load including the effects of longitudinal inertia and shear deformation is analyzed by means of an exact method. Approximate expressions for the frequency and buckling load are derived for clamped and clamped-simply supported beams utilizing Galerkin's technique. A finite-element solution of the same problem is presented in Chapter IX.

A non-linear analysis for the torsional stability of thinwalled beams of open section at large amplitudes is presented
in Chapter X. In Chapter XI, the effects of axial time-invariant compressive load and elastic foundation on the non-linear torsional vibrations and stability are analyzed. In Chapter XII, salient conclusions are arrived at, bringing out the practical significance of the problems solved. Also the soope for further investigation is discussed.

Available reprints of the papers published on part of the. worl presented in this thesis are enclosed at the end for ready reference. The rest of the material is accepted for publication in reputed Joumals and is awaiting publication.

2.1 INTRODUCTION:

Static and dynamic analysis of beans on elastic foundation occupies a prominant place in contemporary structural mechanics. The vibrations and buokling of oontinuously supported finite and infinite beams resting on elastic foundation has an application in the design of highway pavements, aircraft runways and in the use of metal rails for rail road tracks. A very large number of studies have been devoted to this subject, and valuable practical methods for the analysis of beams on elastic foundation have been worked out.

Regarding the static analysis of beams on elastic foundation Hatenyi's book (43) is-rather-a classic giving the complete development of the beams supported on elastic foundation. A later development of the theory is beautifully presented by Vlasov and Leovitiv ($10 \$$) in their book on 'beams, plates, and shells on elastic foundation' ' with improved models of elastic foundation. Since the actual response at the interface depends on the material of the foundation and is usually very difficult to determine, various foundation models were proposed to approximate the real foundation behavior among which Winkler's constant modulus foundation is widely used because of its simplicity. A discussion of various foundation models ls presented by Kerr (05).

[^0]
24

The effect of shear flexibility is included in the analysis of beams on elastic foundation by Ractliffee (74). Biot (10) treated the bending of an infinite beam on elastio foundation and Conway and Farmham (1%) analyzed the bending of a finite beam in bonded and unbonded contact with an elastic foundation. Recently Niyogi (86) presented an approximate analysis of axially constrained beam on eiastic foundation and Nurthy (83) solved the problem of buckling of continuously supported beams. The problem of buckling of thin-walled beams of open seotion such as I-beams, channel sections etc., with continuous elastic supports has been treated by Timoshenko and Gere (99) in their book on 'Theory of elastic stability''. By using the finite e.ement method, Pardoen (90) analyzed the buckling of thin-walled beams of open section resting on continuous elastic supports subjected to an axial load.

On the dynamics side of beams on elastic foundation, Kenney (66) analyzed the steady state flexural vibrations of beams on elastic foundation for a moving load including the effect of viscous damping. Crandall ($L 0$) analyzed the flexural vibrations of a beam on elastic foundation including the effects of rotary inertia and shear deformation. Tseitlin (/03) determined the effects of shear deformation and of rotary inertia in flexural vibrations on beams on elastic foundation. Lloyd and Miklowitz (7,5) presented an analysis for the flexural wave propagation of beams and plates on an elastic foundation.

While there exists a good number of investigations on flexural vibrations of rectangular beans or plates on elastic foundation, the literature on the torsional vibrations of beams on

25

elastic foundation is rather scarce. To the best of authors knowledge the effeots of a time-invarlent axial compressive load and of elastic foundation on the torsional frequency and buckilng loads of thin-walled beams of open section are not being analyzed anywhere in the available literature. To this end, the present chapter deals with the exact and approxinate analytical solutions of the effeots of a time-invenclant axial compressjve load and of elastic foundation on the torsional frequency and buckling loads of lengthy thin-walled beams of open section.

2.2. BASIO ASSUMPIIONS:

The problem inveatigatod in this chaptor is rostriotod to the following assumptions:
a) The thin-walled beam has uniform open cross sections along its length.
b) Strains are assumed to remain within the elastic limit. The curvature and twist of the beam are considered to be small. In particular, the deformations are small compared with the crosssootional dimonalong of tho beam in the inearized problem.
c) The beam is fabricated from material which is homogeneous and isotropic and which obeys Hooke's law (a linearly elastic material).
d) The centroid and shear center of the cross section coincide.
e) Shearing strains of the middle surface due to shear and warping effects, and axial strains of the beam due to longitudinal load components are considered to be negligibly small (the beam is undergoing inextensional motions).
(f) Longitudinal inertia effects are considered to be negligibly small. Conditions (e) and (f).are referred to as the Timoshenko Torsion theory.
(g) Distortion of the cross sections in their own planes is not considered, however, warping of the sections is permitted. Distortion of the sections would be of significance for built-up girders or if the cross section is very deep or very wide.
(h) No internal or external damping forces are considered.

2.3 DERIVATION OF BASIC DIFFERENIIAL EQUATION:

As the cross sectional dimensions are assumed to be small. compared to the length of the beam, the second order effects such as longitutinal inertia and shoar deformation oan bo treated as negligible.

In this section, based on Timoshenico torsion theory (98), the governing differential equation of free motion of a doubly symmetric thin-walled beam on elastic foundation subjected to a timeinvariant axial compressive load is derived utilizing Hamilton's principle. The method has the advantage of generating the natural boundary conditions which shall be discussed in section 2.4.

Hamilton's principle (87_{i}), states that for dynamical process:

$$
\begin{equation*}
\delta \int_{t_{0}}^{t_{k}}\left(T_{k}-U+W\right) d t=0 \tag{2.1}
\end{equation*}
$$

where $(\mathbb{T}-U+W)$ is the Lagrangian function, T_{k} the kinetic

27

energy of the atrained bar, U the total strain energy, W the potential energy of the extermal force, and t_{0}, t_{1} are two fixed instants.

Fig. 2.1 shows a differential element of length dz of a wide-flanged I-beam undergoing torsion. According to Saint Venant, the cross-sections are assumed to rotate about the cen-troid-shear center ' O^{\prime} giving rise to a torsional couple,

$$
\begin{equation*}
T_{s}=G U_{s} \frac{\partial \not \partial}{\partial z} \tag{2.2a}
\end{equation*}
$$

where G is the shear modulus, C_{s} the torsion constant for the cross section, and $\varnothing(z, t)$ the angle of twist.

The torsion constant for an I-section is given by

$$
\begin{equation*}
c_{s}=\left(2 b t_{f}^{3}+h t_{w}^{3}\right) / 3 \tag{2.2b}
\end{equation*}
$$

where b is the width of the flanges, h the height between the centerlines of the flanges, t_{f} the thickness of the flanges, and t_{w} the thickness of the web.

The strain energy $ण_{1}$ at any instant t in the beam of length I due to Saint Venant torsion is

$$
\begin{equation*}
U_{1}=\frac{1}{2} \int_{1}^{L_{s}}\left(\frac{\partial \phi}{\partial z}\right)^{2} d z \tag{2.2c}
\end{equation*}
$$

Accompanying the rotation is a warping of the section which is assumed constant in each piece of the cross section hava moment M. The x-displacement of the top flange centerline, u

FIG. $2 \cdot 1$ - DIFFERENTIAL ELEMENT OF A WIDE-FLANGED I-BEAM

20

is given by

$$
\begin{equation*}
u=(h / 2) \varnothing \tag{2.2d}
\end{equation*}
$$

and henoe the moment M in the top flange is given by

$$
\begin{equation*}
M=E I_{f} \frac{\partial^{2} u}{\partial z^{2}}=E I_{f} \frac{h}{2} \frac{\partial^{2} \phi}{\partial z^{2}} \tag{2.2e}
\end{equation*}
$$

where E is the Young's modulus, I_{f} the moment of inertia of each flange area about y-axis.
, It can be easily observed that the moment M in the top flange and $-M$ in the bottom flange cancel so that no net moment M_{y} exists in the cross section.

The shear force Q due to the bending of the flanges is given by

$$
\begin{equation*}
Q=\frac{\partial M}{\partial z}=\pi I_{f} \frac{h}{2} \frac{\partial^{3} \phi}{\partial z} \tag{2.2f}
\end{equation*}
$$

The equal and opposite shear forces Q, a distance h apart in the top and bottom flanges, give rise to a torque due to warping, T_{w}, given by

$$
\begin{equation*}
T_{W}=-Q h=-E I_{f} \frac{h^{2}}{2} \frac{\partial^{3} \phi}{\partial_{z}^{3}}=-E C_{W} \frac{\partial^{3} \phi}{\partial z^{3}} \tag{2.2g}
\end{equation*}
$$

where $C_{w}=I_{f} h^{2} / 2$ is the warping constant for an I-section (32).
The total torque, T_{p}, on the cross section is given by

$$
\begin{equation*}
T_{t}=T_{s}+T_{W}=G C_{s} \frac{\partial \phi}{\partial z}-E C_{W} \frac{\partial^{3} \phi}{\partial z} \tag{2.2h}
\end{equation*}
$$

30

If U_{2} is the strain energy of the two flanges due to warping, then

$$
\begin{equation*}
U_{2}=\frac{1}{2} \int_{0}^{L} 2 E I_{f}\left(\frac{\partial^{2} u}{\partial z^{2}}\right)^{2} d z=\frac{1}{2} \int_{0}^{I} E C_{W}\left(\frac{\partial^{2} \phi}{\partial z^{2}}\right)^{2} d z \tag{2.21}
\end{equation*}
$$

The strain energy U_{3} due to the Winkler type elastic foundation, is given by

$$
\begin{equation*}
U_{3}=\frac{1}{2} \int_{0}^{I} K_{t}(\varnothing)^{2} d z \tag{2.2j}
\end{equation*}
$$

Hence, the total strain energy U, at any instant t becomes

$$
U=U_{1}+U_{2}+U_{3}=\frac{1}{2} \cdot \int_{0}^{I}\left[G C_{s}\left(\frac{\partial \phi}{\partial z}\right)^{2}+E C_{w}\left(\frac{\partial^{2} \phi}{\partial_{z}}\right)^{2}+K_{t}(\phi)^{2}\right] d z \quad \text { (2.2) }
$$

The kinetic energy of rotation of the cross section at the corresponding instant is given as:

$$
\begin{equation*}
T=\frac{1}{2} \int_{0}^{I} P_{p}\left(\frac{\partial \phi}{\partial t}\right)^{2} d z \tag{2.3}
\end{equation*}
$$

where I_{p} is the polar moment of inertia of the cross section and ψ the mass density of the material of the beam.

The potential energy due to the external time-invariant axial compressive load, P, acting at the centroid of the cross section at the corresponding instant is given by

$$
\begin{equation*}
W=\frac{1}{2} \int_{0}^{I} \frac{P I_{p}}{A}\left(\frac{\partial \phi}{\partial z}\right)^{2} d z \tag{2.4}
\end{equation*}
$$

where A is the area of the cross section.

Substituting for $T_{T} U$ and W from equations (2.2) to (2.4) respeotively in equation (2.1), taking the variations of the integrand, and integrating the first term by parts with respect to t and the next four terms with respect to z, one obtains:

$$
\begin{align*}
& \int_{t_{0}}^{t_{0}} \int_{0}^{I}\left\{\left|\left(G C_{s}-\frac{P I_{p}}{A}\right) \frac{\partial^{2} \phi}{\partial z^{2}}-E C_{W} \frac{\partial^{4} \phi}{\partial z^{4}}-K_{t} \phi-\rho I_{p} \frac{\partial^{2} \phi}{\partial t^{2}}\right| \overline{\delta \phi}\right\} d z d t \\
+ & \left.\int_{0}^{I_{p}} I_{p} I_{p} \frac{\partial \phi}{\partial t} \delta \phi\right|_{t_{0}} ^{t_{1}} d z-\left.\int_{t_{0}}^{t_{0}} E C_{w} \frac{\partial^{R} \phi}{\partial z^{2}} \delta\left(\frac{\partial \phi}{\partial z}\right)\right|_{0} ^{L} d t \\
- & \left.\int_{t_{0}}^{t_{1}}\left\{\left(G C_{s}-\frac{P I_{p}}{A}\right) \frac{\partial \phi}{\partial z}-E C_{w} \frac{\partial^{3} \phi}{\partial z^{3}}\right\} \ddot{\delta \phi}\right|_{0} ^{L} d t=0 \tag{2.5}
\end{align*}
$$

Assuming that the values of \varnothing are given at the two fixed instants, the second integral vanishes. If the boundary conditions are such that the third and the fourth integrals also vanish, then the associated differential equation of motion is given by:

$$
\begin{equation*}
\left(G_{s}-\frac{P I_{p}}{A}\right) \frac{\partial^{2} \phi}{\partial z^{2}}-E C_{w} \frac{\partial^{4} \phi}{\partial z^{4}}-K_{t} \varnothing-P I_{p} \frac{\partial^{2} \phi}{\partial t^{2}}=0 \tag{2.6}
\end{equation*}
$$

2.4 (a) NATURAL BOUNDARY CONDITIONS:

In deriving the basic differential equation of motion (2.6)
from (2.5) it was assumed that the expressions

$$
\operatorname{EC}_{w} \frac{\partial^{2} \phi}{\partial z^{2}} \delta\left(\frac{\partial \phi}{\partial z}\right)
$$

and

$$
\left[\left(G C_{s}-\frac{P I_{p}}{A}\right) \frac{\partial \phi}{\partial z}-E C_{w} \frac{\partial^{3} \phi}{\partial z^{3}}\right] \overline{\delta \phi}
$$

vanish at the ends $z=0$ and $z=1$. These conditions are satisfied if at the two ends

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial_{z}^{2}} \delta^{\circ}\left(\frac{\partial \phi}{\partial z}\right)=0 \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\left(G C_{s}-\frac{P I_{p}}{A}\right) \frac{\partial \phi}{\partial z}-E C_{w} \frac{\partial^{3} \phi}{\partial z^{3}}\right] \overline{\phi \phi}=0 \tag{2.8}
\end{equation*}
$$

Bquation (2.7) and (2.8) give the natural boundary conditions for the finite bar, and are satisfied if the end conditions are taken as
(1) $\phi=0$ and $\frac{\partial^{2} \phi}{\partial z^{2}}=0$

These conditions imply restraint against rotation but not against warping; that is, the end of the bar does not rotate but is free to warp. This is the case of a 'Simple Support''.
(2) $\varnothing=0$ and $\frac{\partial \varnothing}{\partial z}=0$

These oonditions imply restraint not only against rotation but also against any warping of the end cross section. This means that the end of the bar is built-in rigidly so that no deformation of the end cross section can take place. These conditions define a ' 'Fixed Support''.

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial_{q}^{2}}=0 \text { and }\left(G C_{a}-\frac{P I_{p}}{\Lambda}\right) \frac{\partial \phi}{\partial z}-E C_{w} \frac{\partial^{3} \phi}{\partial_{z}^{3}}=0 \tag{3}
\end{equation*}
$$

These conditions imply no restraint of any kind at the end of the bar. This requires that the bending moment in the flange ends and torque acting on the end cross section must be zero. These conditions oorrespond to a ''froe end''.
(4) $\quad \frac{\partial \phi}{\partial z}=0$ and $\left(\mathrm{GC}_{s}-\frac{\mathrm{PI}}{\Lambda}\right) \frac{\partial \phi}{\partial z}-E C_{w} \frac{\partial^{3} \phi}{\partial_{z}{ }^{3}}=0$
or equivalently

$$
\begin{equation*}
\frac{\partial \phi}{\partial z}=0 . \text { and } \frac{\partial^{3} \phi}{\partial z}=0 \tag{2.12}
\end{equation*}
$$

- The latter conditions imply no warping and zero shear forces in the end flanges.

These conditions are useful for finding symmetric modes of vibration in simply supported, fixed-fixed and free-free beams.
(b) TDME-DEPTNDENT BOUNDARY OONDIIIONS:

The homogeneous boundary conditions discussed above, give the free vibrations of bars. For forced vibrations produced by the motion of boundaries, appropriate time dependent end conditions are given by prescribing at each end one member of each of the products:

$$
\operatorname{EC}_{W} \frac{\partial^{2} \phi}{\partial_{z}{ }^{2}} \bar{\delta}\left(\frac{\partial \phi}{\partial_{z}}\right) \text { and }\left|\left(G C_{s}-\frac{P I_{p}}{A}\right) \frac{\partial \phi}{\partial_{z}}-E C_{W} \frac{\partial^{3} \phi}{\partial_{z}^{3}}\right| \cdot \bar{\delta} \phi
$$

or equivalently of:
$M \bar{\delta}\left(\frac{\partial \phi}{\partial z}\right)$ and $\mathbb{I}_{t} \overline{\delta \phi}$.

Of the many conditions thus obtained, the following are of more theoretical interest:

34

1. Twisting moment T_{t} prescribed, flange bending moment $M=0$ or $\frac{\partial \phi}{\partial z}=0$,
2. \varnothing or $\frac{\partial \phi}{\partial t}$ prescribed, flange bending moment $M=0$ or $\frac{\partial \phi}{\partial_{z}}=0$,
3. Flange bending moment M prescribed, twiating moment $T_{t}=0$ or $\varnothing=0$,
4. $\frac{\partial \phi}{\partial z}$ or $\frac{\partial^{2} \phi}{\partial_{z} \partial t}$ prescribed, twisting moment $T_{t}=0$ or $\varnothing=0$.

In the case of semi-infinite beams, conditions need be prescribed at one end since all physical quantities at any instant are zero at the far end.

2.5 ANALYSIS OF VARIOUS TERMS:

1) If $K_{t}=P=0$ and $C_{W}=0$, Eq. (2.6) reduces to

$$
\begin{equation*}
G C_{\Sigma} \frac{\partial^{2} \phi}{\partial z^{2}}-P I_{p} \frac{\partial^{2} \phi}{\partial t^{2}}=0 \tag{2.13}
\end{equation*}
$$

This equation represents Saint Venant's torsion theory for slender beams and does not include warping of the cross-section shear deformation and or longitudinal inertia effects. It is given in Love (76) and is discussed by Gere (:3人).

1i) If $K_{t}=P=0$, Eq. (2.6) reduces to
$G C_{s} \cdot \frac{\partial^{2} \phi}{\partial z^{2}}-E C_{W} \frac{\partial^{3} \phi}{\partial z^{3}}-P I_{p} \frac{\partial^{2} \phi}{\partial t^{2}}=0$
This equation represents Timoshenko's torsion theory which includes the effect of warping of the cross section and has been treated in detail by Gere (32).
(iii) If $K_{t}=0$, Eq. (2.6) reduces to

$$
\begin{equation*}
\left(G C_{s}-\frac{P I_{p}}{A}\right) \frac{\partial^{2} \phi}{\partial z^{2}}-E C_{w} \frac{\partial^{4} \phi}{\partial z^{4}}-P I_{p} \frac{\partial^{2} \phi}{\partial t^{2}}=0 \tag{2.15}
\end{equation*}
$$

This equation represents the effect of an axial timeinvarlant compressive load adतed to Timosheqo's torsion theory.
(iv) If $P=0$, Eq. (2.6) reduces to

$$
\begin{equation*}
G_{s} \frac{\partial^{2} \phi}{\partial z^{2}}-E C_{w} \frac{\partial^{4} \phi}{\partial z^{4}}-K_{t} \phi-P I_{p} \frac{\partial^{2} \phi}{\partial t^{2}}=0 \tag{2.16}
\end{equation*}
$$

This equation represents the effect of Winkler type constant modulus elastic foundation added to Timoshenko Torsion theory.

2.6 NON-DIMENS IONALIZATION AND GENERAL SOLUTION OF EQUATION OF

MOIION: For mathematical simplification, it is convenient to to reduce Eq. (2.6) to a non-dimensional form, simultaneously introducing some dimensionless parameters having physical interpretations.

Introducing, $Z=z / L$, the non-dimensional beam length, and $\left.E_{1}=\int \frac{E_{w}}{I_{p} I^{4}}\right)^{1 / 2} t$, the dimensionless time variable, Eq.(2.6) in nondimensionless form can be written as:

$$
\begin{equation*}
\frac{\partial^{4} \phi}{\partial z^{4}}-\left(K^{2}-\Lambda^{2}\right) \frac{\partial^{2} \phi}{\partial z^{2}}+4 \gamma^{2} \phi+\frac{\partial^{2} \phi}{\partial \tau_{1}^{2}}=0 \tag{2.17}
\end{equation*}
$$

where

$$
\begin{equation*}
K^{2}=\frac{G C}{E C_{W}^{D}} L^{2} \text {, warping regidity parameter, } \tag{2.18}
\end{equation*}
$$

$$
\begin{equation*}
\Delta^{2}=\frac{P I_{D} I^{2}}{A E C_{W}} \text {, axial load parameter, } \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma^{2}=\frac{K_{t} I^{4}}{4 E C_{W}} \text {, foundation parameter, } \tag{2.20}
\end{equation*}
$$

The general solution of Eq. (2.17) can be obtained by using the standard method of separationj variables. Thus, by taking \varnothing in, the form

$$
\begin{equation*}
\varnothing=X(z) T\left(t_{1}\right) \tag{2.21}
\end{equation*}
$$

and then substituting into Eq. (2.17); soparating the variables, and setting the resulting expressions equal to $-\lambda_{n}{ }^{2}$, we obtain

$$
\begin{equation*}
T=A_{n} \cos \lambda_{n} \bar{t}_{1}+B_{n} \sin { }_{n} \bar{t}_{1} \tag{2.22}
\end{equation*}
$$

The expression for a normal mode of vibration is then

$$
\begin{equation*}
\varnothing=X\left(A_{n} \cos \lambda_{n} \bar{t}_{1}+B_{n} \sin \lambda_{n} \bar{t}_{1}\right) \tag{2.23}
\end{equation*}
$$

in which X is the normal function giving the shape of the mode of vibration and λ_{n} is the dinensionless torsional frequency parameter given by

$$
\begin{equation*}
\lambda_{n}^{2}=\frac{1 \rho I_{D^{\prime}} L_{n}^{2} p_{n}^{2}}{E C_{W}} \tag{2.24}
\end{equation*}
$$

Where p_{n} is the natural frequency of vibration in radious per unit of time. Any actual motion of the vibrating beam can be obtained by a summation of normal modes, so that in the general case

$$
\begin{equation*}
\phi=\sum_{n=1}^{\infty} X_{n}\left(A_{n} \cos \lambda_{n} \bar{t}_{1}+B_{n} \sin \lambda_{n} \bar{t}_{1}\right) \tag{2.25}
\end{equation*}
$$

in which the coefficients A_{n} and B_{n} are found from the initial conditions of the vibration.

The equation for determining the normal function X, found by substituting Eq. (2.24) into the differential Eq. (2.17), is then

$$
\begin{equation*}
\frac{d^{4} X}{d z^{4}}-\left(K^{2}-\Delta^{2}\right) \frac{d^{2} X}{d z^{2}}+\left(48^{2}-\lambda_{n}^{2}\right) x=0 \tag{2.26}
\end{equation*}
$$

The general solution of this equation may be found by taring the normal function X in the form:

$$
\begin{equation*}
x=D^{\prime} e^{\eta} Z \tag{2.27}
\end{equation*}
$$

which yields the auxiliary algebraic equation:

$$
\begin{equation*}
\bar{\eta}^{4}-\left(x^{2}-\Delta^{2}\right) \bar{\eta}^{2}+\left(4 \gamma^{2}-\lambda_{n}^{2}\right)=0 \tag{2.28}
\end{equation*}
$$

The four roots of the equation are

$$
\begin{equation*}
\bar{\eta}_{1}^{m}+\alpha_{1}, \quad \bar{\eta}_{2}-\alpha_{1}: \bar{\eta}_{3} m+1 \beta_{1}, \bar{\eta}_{4}^{m}-1 \beta_{1} \tag{2.29}
\end{equation*}
$$

in which α_{1} and β_{1} are the positive, real quantities given by
and

$$
\left.\alpha_{1}=(1 / \sqrt{ })\left\{\left(K^{2}-\Delta^{2}\right)+\left[\left(K^{2}-\Delta^{2}\right)^{2}+4 \lambda_{n^{-}}^{2}-7^{2}\right)\right]^{1 / 2}\right\}^{1 / 2}(2.30)
$$

$$
\begin{equation*}
\beta_{1}=(1 / \sqrt{2})\left\{-\left(K^{2}-\Delta^{2}\right)+\left[\left(K^{2}-\Delta^{2}\right)^{2}+4\left(\lambda_{n}^{2}-4 \gamma^{2}\right)\right]^{1 / 2}\right\} 1 / 2 \tag{2.31}
\end{equation*}
$$

The general solution of Eq. (2.26) then becomes either

$$
x=D_{1}^{\prime} e^{+\alpha_{1} Z}+D_{2}^{\prime} e^{-\alpha_{1} Z}+D_{3}^{\prime} e^{+i \beta_{1} z}+D_{4}^{\prime} e^{-1 \beta_{1} Z}
$$

or

$$
x=D_{1} \cosh \alpha_{1} z+D_{2} \sin h \alpha_{1} z+D_{3} \cos \beta_{1} z+D_{4} \sin \beta_{1} z \text { (2.32) }
$$

There are four orbitrary constants in this expression which must be determined so as to satisfy the particular boundary conditions of the problem. For any beam there will be two boundary conditions at each end and these four conditions determine the frequency equation and the ratios of three of the constants to the fourth constant. Solvine the fraruency arulatinn. then. Aatarminer the prine oipal frequencies of vibration. With the frequencies and normal functions determined, the solution is essentially complete.

2.7 FREQUENCY EOUATIONS AND MODEL FUNCTIONS:

In this section, frequency equations and mode shapes for some special cases are are established. Gere's results (32) are obtained for the special case $\Delta^{2}=r^{2}=0$. Because of the complexity of the frequency equations, the discussion of the results is limited to the case of simply supported beam.

BOUNDARY CONDITIONS: In section (2.4a) natural boundary conditions were discussed. By combining these conditions in pairs, many types of single-span beams can be analyzed. In terms of non-dimengional parameters, the boundary conditions can be written as:

1. Simple Support:

$$
\begin{equation*}
X=0, \quad \frac{d^{2} X}{d z^{2}}=0 \tag{2.33}
\end{equation*}
$$

2. Fixed Support:

$$
\begin{equation*}
X=0, \quad \frac{d X}{d Z}=0 \tag{2.34}
\end{equation*}
$$

3. Free End:

$$
\begin{equation*}
\frac{d^{2} X}{d z^{2}}=0,\left(K^{2}-\Delta^{2}\right) \frac{d X}{d Z}-\frac{d^{3} X}{d z^{3}}=0 \tag{2.35}
\end{equation*}
$$

Before we proceed to derive the frequency and Normal mode equations for various orase, from Bquations (2.30) and (2.31) we obtain:

$$
\begin{equation*}
\alpha_{1}^{2}=\left(K^{2}-\Delta^{2}\right)+\beta_{1}^{2} \tag{2.36}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{n}^{2}=\alpha_{1}^{2} \beta_{1}^{2}+4 \gamma^{2} \tag{2.37}
\end{equation*}
$$

If in oase, the beam is not vibrating and only elastio torsional buckling is to be investigated the expressions for α_{1} and β_{1} from Equations (2.30) and (2.31) reduce to:
and -

$$
\begin{equation*}
\alpha_{1}=(1 / \sqrt{ } 2)\left\{\left(K^{2}-\Delta^{2}\right)+\left[\left(K^{2}-\Delta^{2}\right)^{2}-16 z^{2}\right]^{1 / 2}\right\}^{1 / 2} \tag{2.38}
\end{equation*}
$$

$$
\begin{equation*}
\beta_{1}=(1 / \sqrt{ } 2)\left\{-\left(k^{2}-\Lambda^{2}\right)+\left|\left(K^{2}-\Lambda^{2}\right)^{2}-16 z^{2}\right|^{1 / 2}\right\}^{1 / 2} \tag{2.39}
\end{equation*}
$$

The following frequency equations which we derive for various cases are also useful in finding the torsional buckling loads when the reduced Equations (2.38) and (2.39) are used for α_{1} and β_{1} respectively. In this case the following relations to be used:

$$
\begin{equation*}
\alpha_{1}^{2}=-4 z^{2} / \cdot \beta_{1}^{2} \tag{2.40}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta^{2}=K^{2}+\beta_{1}^{2}-\alpha_{1}^{2} \tag{2.41}
\end{equation*}
$$

2.7.1 SIMPLY SUPPORTED BEAM:

This is the simplest case which admits complete analytical treatment. An example is a beam supported by framing angle connections at the two ends. These beams are used in building construction and therefore are of practical importance.

The boundary conditions from Equations (2.33) are:
$X=d^{2} X / d Z^{2}=0$ at $Z=0$
and.

$$
X=d^{2} X / d Z^{2}=0 \quad \text { at } Z=1
$$

For the conditions at $Z=0$, Equation (2.32) gives:

$$
D_{3}+D_{1} \equiv 0,
$$

and $D_{1}^{\prime}\left(\alpha_{1}^{2}+\beta_{1}^{2}\right)=0$.
Since the secular determinant $\alpha_{1}^{2}+\beta_{1}^{2} \neq 0$, it follows that $D_{1}=D_{3}=0$,
From the second pair of conditions, Equation (2.32) gives:

$$
\begin{equation*}
D_{2} \sinh \alpha_{1}+D_{4} \sin \beta_{1}=0 \tag{2.43}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{2} \alpha^{2} \sinh \alpha_{1}-D_{4} \beta^{2} \sin \beta_{1}=0 \tag{2.44}
\end{equation*}
$$

For a non-trivial solution, the secular determinant must vanish. This gives the characterestic equation

$$
\left(\alpha_{1}^{2}+\beta_{1}^{2}\right) \sinh \alpha_{1} \sin \beta_{1}=0
$$

41

Since $\alpha_{1}^{2}+\beta_{1}^{2} \neq 0$, and sinh $\alpha_{1} \neq 0$, we obtain the frequency equation for this case as:

$$
\begin{equation*}
\sin \beta_{1}=0 \tag{2.45}
\end{equation*}
$$

From, Equation (2.45) we have,

$$
\begin{equation*}
\beta_{1}=n \pi, n=1,2,3, \ldots \ldots \tag{2.46}
\end{equation*}
$$

This is the frequency equation for a simply supported beam and by using the relations (2.36) and (2.37), we find the expression for the frequency parameter λ_{n} as:

$$
\begin{equation*}
\lambda_{n}=\left|n^{2} \pi^{2}\left(n^{2} \pi^{2}+k^{2}-\Delta^{2}\right)+48^{2}\right|^{1 / 2} \tag{2.47}
\end{equation*}
$$

Sinoe ain $\beta_{1}=0$, we find from Equation (2.43) or (2.44) that $D_{2}=0$. Hence the model function is

$$
\begin{equation*}
x=D_{4} \sin n \pi Z \tag{2.48}
\end{equation*}
$$

The complete expression for the angle of twist \varnothing is obtained by summing up the normal modes, so that

$$
\varnothing=\sum_{n=1}^{\infty} \sin n \pi z\left(A_{n} \cos \lambda_{n} t_{1}+B_{n} \sin \lambda_{n} t_{1}\right)
$$

in which A_{n} and B_{n} are determined by the initial conditions.
Gere (3 2) studied the influence of warping parameter K, and concluded that it increase the frequency of vibration as warping increases the stiffness of the bar against rotation. For small values of K, which means C_{W} is relatively large, the effect of warping is considerable and must be taken into account. For large K, which means C_{W} is relatively small, the warping effect

42

is also small and may be neglected in many cases.

To estimate the individual influences of axial load and elastic foundation, Equation (2.47) can be reduced in the following manner.
(a) If the effect of axial load alone is to be studied, by putting $\gamma=0$, we obtain

$$
\begin{equation*}
\lambda_{1}=n \pi\left(n^{2} \pi^{2}+K^{2} \div n^{2}\right)^{1 / 2} \tag{2.49}
\end{equation*}
$$

(b) If the influence of elastic foundation alone is to be investigated, by putting $\Delta=0$, we get

$$
\begin{equation*}
\lambda_{2}=\left[n^{2} \pi^{2}\left(n^{2} \pi^{2}+k^{2}\right)+4 \cdot 8^{2}\right]^{1 / 2} \tag{2.50}
\end{equation*}
$$

(c) If the both the effects of axial load and elastic foundation are to be neglected, by putting $\dot{A}=0$ and $\gamma=0$, we obtain the equation that was derived by Gere (32) as:

$$
\begin{equation*}
\lambda_{3}=n \pi\left(n^{2} \pi^{2}+K^{2}\right)^{1 / 2} \tag{2.51}
\end{equation*}
$$

Denoting by r_{1} the ratio of the frequency of vibration with axial load alone considered, Equation (2.49), to the frequency with axial load also neglected, Equation (2.51), we obtain

$$
\begin{equation*}
r_{1}=\frac{\lambda_{1}}{\lambda 3}=\left[1-\frac{\Delta 2}{n^{2} \pi^{2}+K^{2}}\right]^{1 / 2} \tag{2.52}
\end{equation*}
$$

Similarly, denoting by r_{2} the ratio of the frequency of vibration
with elastic foundation alone considered, Equation (2.50), to the frequency with elastic foundation also neglected, Equation (2.51), we obtain

$$
\begin{equation*}
r_{2}=\frac{\lambda_{2}}{\lambda_{3}}=\left|1+\frac{48^{8}}{n^{2} \pi^{2}\left(n^{2} \pi^{2}+K^{2}\right)}\right|^{1 / 2} \tag{2.53}
\end{equation*}
$$

To find the combined influence of axial load and elastic foundation, let us denote by x_{3} the ratio of the frequency of vibration with both axial load and elastic foundation considered, Equation (2.47), to the frequency with both axial load and elastic foundation negleoted, we obtain

$$
\begin{equation*}
r_{3}=\frac{\lambda n}{\lambda 3}=\left|1+\frac{48^{2}-n^{2} \pi^{2} A^{2}}{n^{2} \pi^{2}\left(n^{2} \pi^{2}+K^{2}\right)}\right|^{1 / 2} \tag{2.54}
\end{equation*}
$$

Fig.2.2 shows the variation of r_{1} with Δ, for values of $K=0.1,1.0$ and 10.0 for the first fundamental mode of vibration. The effect of axial load is to decrease the frequency of vibration, since the axial load decreases the stiffness of the bar against rotation. For small Δ, which means axial load R:1s relatively: small, the effect of axial load is small and for large Δ, which means P is relatively laree, the effect of axinl load is quite conglderable.

Figs. 2.3 and 2.4 show the variation of r_{2} with 8 , for values of $K=1$ and 10 respectively; for the first three modes of vibration. The effect of elastic foundation is to increase the

Fig. 2.4. Variation of r_{2} with r, for $k=10.0$ for the first three modes of vibration.
froquonay of vibration, ar tho olagtio foundation increases the stiffness of the bar against rotation. For small $\hat{\gamma}$, which means foundation modulus K_{t} is relatively small, the effect of elastic foundation is small and for large 3 , which means K_{t} is relatively Large, the effect of elation foundation ia quitia oonadarable.

Figs.2.5 and 2.6 show the variation of r_{3} with Δ and γ, for values of $K=1$ and 10 , for the first fundamental mode of vibration. The combined effect of axial load and elastic foundton is the algebraic sum of individual influences which are actually opposite in nature. For a value of $\gamma^{2}=0.25 n^{2} \pi^{2} \Delta^{2}$, the combined influence of the axial compressive load and elastic foundation on the torsional frequency becomes zero. It can also be noticed from Equation (2.53) that the influence of elastic foundation decreases for higher modes of vibration.

When the beam is not vibrating, ie., $\lambda=0$, we obtain from Equation (2.47), the expression for torsional buckling load ($n=1$) as,

$$
\begin{equation*}
\Delta_{c r}^{2}=\pi^{2}+K^{2}+\left(4 / \pi^{2}\right) \gamma^{2} \tag{2.55}
\end{equation*}
$$

To show the influence of elastic foundation on the tor- . sional buckling load, let us define by r_{4}, the ratio of the buckling load when elastic foundation is considered, to the bucking load when elastic foundation is neglected.

$$
\begin{equation*}
r_{4}=1+\frac{4 \gamma^{2}}{\pi^{2}\left(\pi^{2}+K^{2}\right)} \tag{2.56}
\end{equation*}
$$

Fig.2.7. Variation of π_{4} with γ for Values of $K=0.1,1.0$ and 10.0 .

From the above Eq. (2.56) and Fig.2.7, which shows the variation of r_{4} with ix for values of $K=0.1,1.0$ and 10.0 , it can be observed that in the case of torsional buckling also the effect of elastic foundation is to increase the buckling load, as the elastic foundation increases the stiffness of the member against rotation. The influence of the warping parameter K is also to increase the buckling load. But relatively, the effect of warping parameter is more pronounced than that of elastic foundation.

2. 72 FIXED-FIXED BEAM:

In the case of a beam which is built-in rigidly at both ends, the boundary conditions are:

$$
X=\frac{d X}{d Z}=0 \text { at } Z=0
$$

and

$$
X=\frac{d X}{d Z}=0 \quad \text { at } \quad Z=1
$$

Applying the boundary conditions to the general solutions, Eq.(2.32), frequency equation can be obtained as,
$2-2 \cosh \alpha_{1} \cos \beta_{1}+\frac{\left(\alpha_{1}^{2}-\beta_{1}^{2}\right)}{\alpha_{1} \beta_{1}} \sinh \alpha_{1} \sin \beta_{1}=0$

The modal function then becomes,
$X=D_{1}\left(\cosh \alpha_{1} z+\beta_{1} \eta_{1} \sinh \alpha_{1} z-\cos \beta_{1} z-\alpha_{1} \eta_{1} \sin \beta_{1} z\right)$ where

$$
\begin{equation*}
\eta_{1}=\frac{\cos \beta_{1}-\cosh \alpha_{1}}{\beta_{1} \sinh \alpha_{1}-\alpha_{1} \sin \beta_{1}}=\frac{\beta_{1} \sin \beta_{1}+\alpha_{1} \sinh \alpha_{1}}{\alpha_{1} \beta_{1}\left(\cos \beta_{1}-\cosh \alpha_{1}\right)} \tag{2.59}
\end{equation*}
$$

2.7.3. BEAM FIXED AT ONE END AND SDAPLY SUPPORTED AT THE OTHER:

With the end $Z=0$, taken as the simply supported end, and the end $Z=1$ as the built-in end, the boundary conditions are:

$$
X=\frac{d^{2} X}{d Z^{2}}=0 \quad \text { at } Z=0
$$

and

$$
X=\frac{\partial X}{\partial Z}=0 \quad \text { at } Z=1
$$

The frequency equation in this case becomes

$$
\begin{equation*}
\beta_{1} \tanh \alpha_{1}-\alpha_{1} \tan \beta_{1}=0 \tag{2.60}
\end{equation*}
$$

The model function then is

$$
\begin{equation*}
x=D_{2}\left(\sinh \alpha_{1} z-\eta_{2} \sin \beta_{1} z\right) \tag{2.61}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta_{2}=\frac{\sinh \alpha_{1}}{\sin \beta_{1}}=\frac{\alpha_{1} \cosh \alpha_{1}}{\beta_{1} \cos \beta_{1}} \tag{2.62}
\end{equation*}
$$

2.7.4. CANTILEVER BEAM WITH WARPING RESTRAINED:

For a cantilever beam built-in rigidly at the end $Z=0$ so that warping is completely prevented, and with a free end Z at $z=1$, the boundary conditions are:

$$
X=\frac{d X}{d Z}=0 \quad \text { at } \quad Z=0
$$

and

53

$$
\frac{d^{2} X}{d z^{2}}={ }^{\prime}\left(K^{2}-\Delta^{2}\right) \frac{d X}{d Z}-\frac{d^{3} X}{d z^{3}}=0 \text { at } Z=1
$$

The frequency equation for this beam can be obtained as:
$2+\frac{\alpha_{1}^{4}+\beta_{1}^{4}}{\alpha_{1}^{2} \beta_{1}^{2}} \cosh \alpha_{1} \cos \beta_{1}+\frac{\alpha_{1}^{2}-\beta_{1}^{2}}{\alpha_{1} \beta_{1}} \sinh \alpha_{1} \sin \beta_{1}=0$
The modal function then becomes,
$X=D_{1}\left(\cosh \alpha_{1} Z+\beta_{1} \eta_{3} \sinh \alpha_{1} Z-\cos \beta_{1} Z-\alpha_{1} \eta_{3} \sin \beta_{1} Z\right)$
where

2.7.5. CANTILEVER BEAM WITH UNRESTRAINED WARPING:

In the previous case, a cantilever beam was considered in which the supported end was fixed and offered complete restraint against warping. A cantilever beam may also be supported in a manner such that warping is free to occur at the supported end. An example is a cantilever beam supported by the ordinary framing angles and moment resistant connections used in building construction. With regard to torsion, such a support offers restraint against rotation but not warping and hence is a simple support. It is, of course, a fixed support with regard to bending.

Thus, for a cantilever simply supported at one end and free at the other, the boundary conditions are:

$$
x=\frac{d^{2} x}{d z^{2}}=0 \quad \text { at } z=0
$$

and

$$
\frac{d^{2} x}{d z^{2}}=\left(K^{2}-i^{2}\right) \frac{d X}{d Z}-\frac{d^{3} x}{d z^{3}}=0 \quad \text { at } z=1
$$

Applying the above boundary conditions, the frequency equation can be obtained as,

$$
\begin{equation*}
\alpha_{1}^{3} \tanh \alpha_{1}-\beta_{1}^{3} \tan \beta_{1}=0 \tag{8.66}
\end{equation*}
$$

The modal function in this case becomes,

$$
\begin{equation*}
x=D_{2}\left(\sinh \alpha_{1} z+\eta_{4} \sin \beta_{1} z\right) \tag{2.67}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta_{4}=\frac{\alpha_{1}^{2} \sinh \alpha_{1}}{\beta_{1}^{2} \sin \beta_{1}}=\frac{\beta_{1} \cosh \alpha_{1}}{\alpha_{1} \cos \beta_{1}} \tag{2.68}
\end{equation*}
$$

2.7.6. BEAM WITH FREE KNDS:

In the case of a beam which is free at both ends, the boundary conditions are:

$$
\frac{d^{2} X}{d z^{2}}=\left(K^{2}-A^{2}\right) \frac{d X}{d Z}-\frac{d^{3} X}{d Z^{3}}=0 \text { at } Z=0
$$

and

$$
\frac{d^{2} x}{d Z^{2}}=\left(K^{2}-A^{2}\right) \frac{d x}{d Z}-\frac{d^{3} x}{d Z^{3}}=0 \text { at } Z=1
$$

The frequency equation for this case becomes, $2-2 \cosh \alpha_{1} \cos \beta_{1}+\frac{\beta_{1}^{6}-\alpha_{1}^{6}}{\alpha_{1}^{3} \beta_{1}^{3}} \sinh \alpha_{1} \sin \beta_{1}=0$

55

The modal funotion therefore beoomen
$X=D_{1}\left(\cosh \alpha_{1} Z+\eta_{5} \sinh \alpha_{1} Z+\left(\alpha_{1} / \beta_{1}\right)^{2} \cos \beta_{1} z\right.$

$$
\begin{equation*}
\left.+\left(\beta_{1} / \alpha_{1}\right) \eta_{B} \text { ब1.n } \beta_{1} z\right) \tag{8,70}
\end{equation*}
$$

- where

$$
\begin{equation*}
\eta_{5}=\frac{\alpha_{1}^{3}\left(\cos \beta_{1}-\cosh \alpha_{1}\right)}{\left.\alpha_{1}^{3} \sinh \alpha_{1}-\beta_{1}^{3} \sin \beta\right)}=\frac{\beta_{1}^{3} \sinh \alpha_{1}+\alpha_{1}^{3} \sin \beta_{1}}{\beta_{1}^{3}\left(\cos \beta_{1}-\cosh \alpha_{1}\right)} \tag{2.71}
\end{equation*}
$$

2.8. RESULTS AND DISCUSSION:

The frequency equations derived in this section for various combinations of boundary conditions are highly transcendental In nature and can be solved only by lengthy trial-and-error proceAura. Ae 1s atatad oarilor tho santo frequonoy equations can be used to obtain the Elastic Torsional Buckling loads for various end condition but with the only difference that for α_{1} and β_{1}, Equations (2.38) and (2.39) are to be used in conjunction with Equations (2.40), (2.41) and the corresponding frequency Equation. A oomputer program has been written in Fortran IV for solution of the above Frequency equations on IBM-1130 computer at the Computer Center, Andhra University, Waltair. Typical results for simply supported, fixed-fixed beam and beam fixed at one end and simply supported at the other for the fundamental mode $(n=1)$ for values of $K=1$ and 10 are presented in Figs. 2.8 to 2.13 showing the combined influence of axial load (A) and Flastic foundation (X). The individual influences also can be easily observed from these graphs. Figs $2 \cdot \%$ and $\%$ ghow the variation of the fundamental torsional frequency parameter $\lambda_{h}^{2}(n=1)$, for a simply supported beam,

for a simple supported beam.

with varlous values of load parameter 4 and foundation parameter γ for values of $K=1$ and 10 raopeotivoly. Fien.8.10 and 2.11 show the reaults for fixed-fixat beall and, the rastlita oarmarnonm ding to a beam fixed at one end and simply supported at the other are shown in Figs.2.12 and 2.13.

It can be observed from these graphs that the values of the critical buckling loads for various values of γ can be obtained from the graphs for $\lambda^{2}=0$ ie., from the axis on which is taken. When the axial load is not-existing the values of the frequency parameter λ^{2} can be obtained from these graphs for $\dot{\lambda}=0$ ie., from the vertical axis on which $\lambda^{\text {is }}$ plotted for various , values of γ. The combined influence of the foundation parameter γ and the load parameter $\langle 1$ can be observed from the graphs to b_{e} due to the interaction between the individual influences on the frequency of vibration, which are interestingly opposite in nature. Independently as the load parameter increases the frequency parameter decreases to zero. In the absence of axial load, the frequency increases for increasing values of γ. It can be therefore concluded that the combined influence of foundation and load parameters is tho algebraic sum of the individual influences on the frequency of vibration.

2.9. APPROXIMATE SOLUTIONS BY GALERKIN'S TECHNIQUE:

Except for the simply-supported beam, the frequency equations for other boundary conditions derived in the above sections (2.7) and (2.8) can be observed to be highly transcendental

FIG:2.1IVALUES OF FRE QUENCY \& CRITICAL BUCKLING PARAMETERS

> FOR A FIXFD_FIXED BEAM.

co

FIG. 2.I3.VALUES OF FREQUENCY \& CRITICAL BUCKLING PARAMETERS FOR A FIXED-SIMPLY SUPPORTING BEAM

AOR A FIXED-SIMPLY SUPPORTING BEAM.
anả are solved on a digital computer only by lengthy-trial and error method. An attempt has been made in this section to derive approximate expressions for the torsional frequencies of fixed end beam and of a beam fixed at one end and simply supported at the other, utilizing the well know Galerkin's technique(77).

2.9.1. FIXED END BEAM:

The boundary conditions for a beam fixed at both ends, $Z=0$ and $z=1$ are given by

$$
X=\frac{d X}{d Z}=0 \text { at } Z=0
$$

and

$$
x=\frac{d x}{d z}=0 \text { at } z=1
$$

To satisfy the above boundary conditions, the normal function X in this case can be assumed in the form

$$
\begin{equation*}
X=\sum_{n=1}^{\infty} B_{n}(1-\cos 2 n \pi z) \tag{2.72}
\end{equation*}
$$

Substituting Equation (2.72) in the differential equation (2.26), orthagonalizing the resulting error with the assumed function given by Equation (2.72) and integrating the obtained expreseion over the whole leneth of the bean, the expression for the frequency parameter $\lambda_{\text {, }}$ can be obtained as,

$$
\begin{equation*}
\lambda=2\left|\left(n^{2} \pi^{2} / 3\right)\left(4 n^{2} \pi^{2}+k^{2}-\gamma^{2}\right)+\Delta^{2}\right|^{1 / 2} \tag{2.73}
\end{equation*}
$$

In arriving Equation (2.73), only one term of the infinite series of Equation (2.72) is utilized. Hence, Equation(2.73)
gives an upper bound for the natural frequency parameter.
By putting $\lambda=0$, and $n=1$, in Equation (2.73) the expression for the buckling load parameter $\Delta_{c r}^{2}$, for the fixed end beam can be obtained as

$$
\begin{equation*}
\Delta_{c r}^{2}=4 \pi^{2}+K^{2}+\left(3 / \pi^{2}\right) \gamma^{2} \tag{2.74}
\end{equation*}
$$

2.9.2. BEAM FIXED AT ONE END AND SIMPLY SUPPORTED AT THE OTHER:

The boundary conditions in this case are:

$$
X=\frac{d X}{\partial Z}=0 \quad \text { at } \quad Z=0
$$

and

$$
x=\frac{\alpha^{2} x}{d z^{2}}=0 \text { at } z=1
$$

The normal function satisfying the above boundary conditions can be assumed in the form

$$
\begin{equation*}
x=\sum_{n=1}^{\infty} C_{n}\left(\cos \frac{n \pi}{2} z-\cos \frac{3 n \pi}{2} z\right) \tag{2.75}
\end{equation*}
$$

Substituting Equation (2.75) in the differential Equation (2.26),orthagonalizing the resulting error with the assumed function given by Equation (2.75) and integrating the obtained expression over the whole length of the beam, the equation for the frequency parameter λ can be obtained as,

$$
\begin{equation*}
\lambda=\left|1: 25 n^{2} \pi^{2}\left(2.05 n^{2} \pi^{2}+K^{2}-\Delta^{2}\right)+47^{2}\right| 1 / 2 \tag{2.76}
\end{equation*}
$$

Equation (2.76) also gives an upper bound for the natural torsional frequency perameter as only one term of the infinite series of

Equation (2.75) is utilized in obtaining the solution.
By putting $\lambda=0$ and $n=1$, in Equation (2.76), the expression for the buokling load parameter $\Delta_{\text {cr }}^{\text {l }}$, for the beam fixed at one end and simply supported at the other can be obtained as

$$
\begin{equation*}
\Delta_{\text {or }}^{2}=2.05 \pi^{2}+K^{2}+\left(3.2 / \pi^{2}\right) \nabla^{2} \tag{2.77}
\end{equation*}
$$

Tables 2.1 and 2.2 show the comparison between the exact results (obtained by digital computer) and the approximate results (obtained by Galerkin's technique) of the frequency parameter λ for the first mode of vibration ($n=1$) of, fixed end beam and a beam fixed at one end and simply supported at the other respectively. The agreement between the results is quite good.

2.9.3. LIMITTING CONDITIONS:

The limitting conditions at which the combined influence of the axial compressive load and elastic foundation on the torsional frequency becomes zero, for some cases are as follows:

1) Simply-Supported Beam: From Equation (2.47) the limitting condition in this case becomes,

$$
\begin{equation*}
\gamma=0.5 \mathrm{n} \pi \Delta \tag{2.78}
\end{equation*}
$$

2) Fixed-Ind Beam: From Equation (2.73) the limitting condition in this case is

$$
\begin{equation*}
\gamma=0.574 n \pi \Delta \tag{2.79}
\end{equation*}
$$

I A B LE-2.1
Comparison between exact and approximate values of λ^{2} for the first mode of vibration of

fixed-fixed beam.

K	\triangle	Values of λ^{2} from exact and Approximate Analyses					
		$\gamma=4.0$		$\gamma=8.0$		$\gamma=12.0$	
		Exact	Approximate ${ }^{\text {* }}$	Exact	Approximate ${ }^{\text {*it }}$	Exact	Approximate

[^1]* Results from Galerkin's Technique, Eq.2.73
67
TABLE-2.2
Comparison between exact and approximate values of λ^{2} for the first mode of vibration of a fixed simply supported beam.

K	Δ	Values of λ^{2} from Exact and Approximate Analyses ${ }^{*}$					
		$\gamma=4.0$		$\gamma=8.0$		$\gamma=12.0$	
		Exact	Approximate	Exact	'Approximate	Exact	'Approximate
1.0	0.0	314.265	325.950	506.302	517.894	826.253	837.892
	2.0	268.632	276.602	460.548	468.596	780.735	788.735
	4.0	132.226	128.557	324.676	320.624	644.378	640.555
10.0	0.0	1439.762	1547.319	1631.753	1739.526	1951.865	2059.296
	4.0	1257.879	1349.926	1449.536	1541.898	1769.758	1861.886
	8.0	712.010	757.747	904.893	949.692	1824.926	1269.686

* Results from Galerkin's Technique, Eq. 2.76

3) Beam fixed at one end and Simply Supported at the other: From Equation (2.70) tihe limsttine oondition for this onse can be obtalned as

$$
\begin{equation*}
\gamma=0.559 n \pi \Delta . \tag{2.80}
\end{equation*}
$$

For the above relations in various cases between γ and Δ, it is really interesting to note that there will be no influence of these two effeots on the torsional frequency of vibration. This is because of the opposite nature of their individual effects and these individual effects get nullified at these limitfing conclitions for varioun oasos.

2.10. RBMARKS:

It must be recalled here that the analysis presented in this chapter neglects the effects of longitudinal inertia and shear deformation which are of importance if the effects of cross sectional dimensions on frequencies of vibration are desired. Hence, this analysis is valid for lengthy beams, ie., for beams whose cross sectional dimensions are quite small compared to the length. These second arder effects such as longitudinal inertia and shear deformation, therefore, profoundly influence, the frequencies of torsional vibration at higher modes and the propagation of short wave length waves. These effects are taken into consideration in the analyses presented in the following chapters.

CHAPTRR - III

FINITR ELEMMNT ANALYSIS OF TORSIONAL VIBRATIONS AND STABILITY OF LENGTHY THIN-WALLED BEAMS ON ELASTIC FOUNDATION*.

3.1. INTRODUCTION:

In Chapter II the title problem is fully analyzed from a purely mathematical approach. This approach provided us with exact solutions for the problem. One short-aoming of such an approsoh is that due to the oomplex nature of the equation of motion such mathematical difficulties as non-uniform members, complex loadings, or arbitrary boundary conditions can not be easily handled.

To complement the exact solutions given in the previous Chapter, this Chapter intends to provide a means of obtaining approximate solutions to our present problem. The technique used to obtain the approximate results is the method of ''finite' or ''discrete'' elements. Basically, the finite element method is an extension of the well known Rayleigh-Ritz method in which assumed displacement patterns are specified for an entire structure. In the finite element technique, the continuous system is replaced by a substitute system consisting of a number of finite elements linked together. Once the properties: stiffness, mass and

[^2]loading of the individual elements have been defined, the equilibrium of the stbstitute system can be described by a large number of equations, readily solvable on a digital computer.

Many of the early advances in the finite element method were presented in technical Journals, but recently two texts have appeared that summarized this modern technique $(93,115)$. These texts cover such varied topics as plane stress, plane strain, axisymetric stress analysis, three-dimensional stress analysis, bending of beams and structural stability. To date the finite element method has been used to predict the buckling loads of trusses, beams, plates and shells. In applying the finite element method to these problems in elastic stability it has become necessary to derive the so-called ''initial stress'' or 'stability coefficient'' matrices that account for the in-plane stresses due to in - plane loads.

For problems involving large displacements the stability coefficient matrix has been termed as the 'geometric stiffness'' matrix since it accounts for the influence of large displacements on the equations of equilibrium. Using the conventional elastic stiffness matrix that accounts for the elastic bending stresses, the stability coefficient matrix for small displacements, and the mass matrix that accounts for the inertial loads, a matrix eigenvalue problem is established from which the natural frequencies, critical loads and mode shapes can be determined.

Many investigators used the above technique to predict the buckling loads of trusses (99), beams (68), plates and
shells (64,89 . Very recently, Pardoen (90) analyzed static and dynamic buckling of thin-walled columns using finite elements and, Barsoum (6) presented a finite element formulation for the general stability analysis of thin-walled members. The method has yet to be extended to the analysis of torsional vibrations and stability of lengthy and short thin-walled beams of open section resting on continuous winkler type elastic foundation.

Thus, a primary objective of this Chapter is to develop, for a lengthy thin-walled beam resting on Winkler type elastio foundation and subjected to an axial time-invariant compressive load, the appropriate stiffness, stability coefficient and, mass matrices necessary for a discrete element torsional vibration and stability analysis. Further, to establish the reliability of the method, the approximate finite element results will be compared with the exact solutions obtained Chapter II.

3.2. FINITE ELEMENT CONCEPT:

The use of finite elements to solve complex problems in structural mechanics has been well documented (115). The method has gained acceptance not only because of its versatility in handling complex structural problems, but also because of the highly systematic manner in which the problem is formulated and subsequently solved. Essentially, the finite element method consists of replacing the actual continuum by a mathematical model composed of structural elements of finite size having known ela-
stio and inertial properties. These struatural elements serve as building blocks of the system which, when assembled, provide approximations to the statio and dynamio properties of the aotual system.

The basic approach in analyzing a thin-walled beam as a net work of discrete elements can be summarized in four steps (26) as follows:
(1) The continuum must be separated by a series of lines or surfaces into a number of ''finite elements''. For a prismatic thin-walled member such as a thin-walled beam, each inite element is represented by a longitudinal segment of the whole beam.
(2) All elements are assumed to be interconnected at a discrete number of boundaries to atleast one adjacent finite element. At each of the connection boundaries a nodal point is designated. For a thin-walled beam the nodal point at the connection boundary is the shear center with generalized displacements such as translations or rotations at this point comprising the basic unknowns of the problem.
(3) The most important step in formulating the finite element procedure is choosing a function or functions to define uniquely the state of displacements within each finite element in terms of its nodal displacements.
(4) Finally, once the displacement function has been determined for the element in terms of nodal displacements, the strain
etato within eaoh olamont oun readily be found. Iyploally, for elastic materials, a differential relationship exists between the displacement and strain states. The strains, together with the appropriate constitutive relation, establish the stress state Within the element, the strain energy, potential energy and kinetic energy can be expressed in terms of its generalized nodal displacements.

The finite element formulation of the general struotural dynamio response problem results in the Equation (26)

$$
\begin{equation*}
\bar{M} \dot{R}+\bar{K} \vec{R}-\bar{S} \bar{R}=\bar{F} \tag{3.1}
\end{equation*}
$$

In Eq. (3.1), \bar{K} is the ''total stiffness matrix' in which the coefficients $\bar{K}_{1 j}$ gives the generalized force developed at point 1 as the result of unit generalized displacement $\bar{R}_{j}=1$ imposed on point j, all other points being restrained to zero displacement. The coefficient $\bar{S}_{i j}$ of the ' 'total stability coefficient matrix' \bar{S} represents the external load at coordinate i which results in a generalized displacement $\vec{R}_{j}=1$ at point j. The coefficient $\bar{M}_{i j}$ of the 'total mass matrix'' \bar{M} represents the mass inertia load at point 1 developed by a unit acceleration $\ddot{\mathrm{R}}_{j}=1$ at point j. The matrices \bar{R}, \bar{R} and \bar{F} are the generalized displacements, accelerations, and loads respectively.

In the finite element deformation method, the deformations of the structure are assumed to be a function of the gene-

74

ralized displacementa. The displacements should bo ontinuous
 elements, and satisfy the displacement boundary conditions, but they need not satiafy the Cauchy equilibrium equations.

Using the general procedure of the finite element method, the total structure is devided into a number of elements. These elements are connected at their corner or nodal points. Considering a typical three-dimensional element N, the displacements are given by

$$
\begin{equation*}
\bar{u}(x, y, z, t)=\bar{A}(x, y, z) \bar{R}_{N}(t) \tag{3.2}
\end{equation*}
$$

where the elements of \bar{u} are components of the displacement vector, \bar{A} is a matrix whose elements are functions of the coordinates x, y, and z, and the elements of \bar{R}_{N} are the generalized coordinates for the N th element with time-invariant magnitudes. The strains are given in terms of nodal displacements using the strain-displacement relation.

Thus,

$$
\begin{equation*}
\bar{\varepsilon}(x, y, z, t)=\bar{C}(x, y, z) \bar{R}_{N}(t) \tag{3.3}
\end{equation*}
$$

where \bar{C} is a matrix giving the strains in terms of the generalized displacements $\overline{\mathrm{R}}_{\mathrm{N}}$. Using the stress-strain relation, the strain energy can be obtained.

$$
\begin{align*}
& \text { Thus, } \\
& \qquad \bar{\sigma}(x, y, z, t)=\bar{D}(x, y, z) \bar{€}(s, y, z, t) \tag{3.4}
\end{align*}
$$

where $\bar{\sigma}$ is a matrix of stresses, and the \bar{D} matrix consists of appropriate material constants.

The strain energy U is then given by

$$
\begin{equation*}
U=\frac{1}{2} \int_{V} \bar{\epsilon}^{T} \bar{\sigma} d V \tag{3.5}
\end{equation*}
$$

where ϵ^{T} represents the transpose of the strain matrix \mathcal{E} and ∇ is the volume of the beam.

Substituting Eqs. (3.3) and (3.4) in Eq. (3.5), the strain energy expression becomes,

$$
\begin{equation*}
\mathrm{U}=\frac{1}{2} \int_{\mathrm{V}} \mathrm{R}_{\mathrm{N}}^{T} \mathrm{C}^{\prime \mathrm{D}} \overline{\mathrm{D}} \overline{\mathrm{C}} \overline{\mathrm{R}}_{\mathrm{N}} \mathrm{dv}=\frac{1}{2} \overline{\mathrm{R}}_{\mathrm{N}}^{T} \overline{\mathrm{~K}}_{\mathrm{N}} \overline{\mathrm{R}}_{\mathrm{N}} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{K}_{\mathrm{N}}=\int_{\nabla} \overline{\mathrm{C}}^{\mathrm{T}} \overline{\mathrm{D}} \overline{\mathrm{C}} \mathrm{~d} \nabla \tag{3.7}
\end{equation*}
$$

and is oalled stiffness matrix for the N th element. Similarly the potential energy can also be written in terms of the generalized coordinates and the stability coefficient matrix S_{N} for the N th element can be obtained.

The kinetic energy T is given by

$$
\begin{equation*}
T=\frac{1}{2} \int_{V} \dot{\bar{u}}^{T} \dot{\bar{u}} d v \tag{3.8}
\end{equation*}
$$

Substituting Eq.(3.2) into Eq. (3.8) we obtain,

$$
\begin{equation*}
T=\frac{1}{2} f P \frac{2}{\mathrm{R}}_{\mathrm{N}}^{\mathrm{T}} \overline{\mathrm{~A}}^{T} \overline{\mathrm{~A}}_{\mathrm{R}} \dot{\overline{\mathrm{R}}}_{\mathrm{N}} d \nabla=\frac{1}{2} \dot{\overline{\mathrm{R}}}_{\mathrm{N}}^{\mathrm{T}} \overline{\mathrm{M}}_{\mathrm{N}} \dot{\overline{\mathrm{R}}}_{\mathrm{N}}, \tag{3.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{\mathbb{M}}_{\mathrm{N}}=\int_{\nabla} \rho \overline{\mathrm{A}}^{\mathrm{T}} \overline{\mathrm{~A}} \mathrm{~d} \nabla \tag{3.10}
\end{equation*}
$$

and is oilled the mass matrix for the Nth element. The stiffness, stability coefficient and mass matrices for the complete' oonnected structure is obtained by ndifition of the onmponent matrices. A given column of the matrix consists of a list of generalized forces at each of the nodes for unit generalized displacement of a given node. When two or more elements have a common node, forces are simply added. Thus if $\overline{\mathrm{K}}$ is the final stiffness matrix for the whole structure, the elements of \hat{K} are built as

$$
\begin{equation*}
\bar{K}_{i j}=\Sigma\left(\bar{K}_{i j}\right)_{N}, N=1,2, \ldots \tag{3.11}
\end{equation*}
$$

and similarly

$$
\begin{align*}
& \bar{S}_{i j}=\Sigma\left(\bar{S}_{i j}\right)_{N}, N=1,2, \ldots \tag{3.12}\\
& \bar{U}_{i j}=\Sigma\left(\bar{I}_{i j}\right)_{N}, N=1,2, \ldots \tag{3.13}
\end{align*}
$$

Assuming that the displacements undergo harmonic oscillation, then the displacement vector $\overline{\mathrm{R}}_{\mathrm{N}}$ can be written as

$$
\begin{equation*}
R_{N}(t)=\bar{r}_{N} e^{i p_{n} t} \tag{3.14}
\end{equation*}
$$

where \bar{r}_{N} is a column vector of amplitudes of the generalized displacements $\overline{\mathrm{R}}_{\mathrm{N}}$ and p_{n} is the oircular frequency of oscillation. Substituting Eq.(3.14) into Eq. (3.1) gives:

$$
\begin{equation*}
[\mathbb{K}-\bar{S}]\left[\bar{r}_{N}\right]=\mathrm{p}_{\mathrm{n}}^{2}[\mathbb{M}]\left[\bar{r}_{N}\right] \tag{3.15}
\end{equation*}
$$

Eq. (3.15) represents an algebraic eigenvalue problem. In this finite element method, the matrices $[\bar{K}],[\bar{S}]$ and $[\mathbb{N}]$ will be
usually symmetric. If the matrices are both symmetric and positive definite, all eigenvalues p_{n}^{2}, will be real, positive numbers.

Moreover, the eigen vectors of symetric matrices are independent; therefore, the matrix $\left[\bar{r}_{\mathrm{N}}\right]$ is nonsingular. Another useful property of symmetric matrices is that if the eigenveotors are normalized in such a way that $\left\{\bar{r}_{1}\right\}^{T}\left\{\bar{r}_{j}\right\}=1$, the inverse of the modal matrix is equal to the transpose, that is the modal matrix is orthogonal.

The eigenvalue problem for large systems can be solved by numerical schemes that are either direct or iterative. The direct methods are more general and are commonly employed, although the iterative shcemes are suitable for computations when only one or a few of the eigenvalues and their corresponding eigen Vectors are needed. Amone the various direct approaches to be found in Iiterature are the Jacobi, Givens, Householder and Q R method. Among the iterative techniques are the power or StodolaVianello method and inverse iteration. A discussion of these various methods is given in Ref. (F / l). In the present work, Jacobi's method is utilized in solving the eigenvalue problems.

3.4a. FUNCTIONAL REPRESENTATION OF ANGLE OF TWIST:

In the past the use of polynomials as displacement funotions has been popular for describing the displacement within each finite element in terms of its nodal displacements. For the present, to describe the twisting behavior of the thin-walled
beam a cubic polynomial is assumed to approximate the angle of twist within each finite element. The motivation for choosing a oubio polynomial is that the contribution to the strain energy due to warping (See Eq.2.2) involves a second derivative of the angle of twist. Choosing a cubic polynomial assures that there will be a non-zero contribution from the warping term whereas If the angle of twist only varled linearly there could be no contribution from the warping term as in thits caoe the oecond derivative vanishes.

For each finite element of a lengthy thin-walled beam in. torsion, there are two generalized nodal displacements at the j end of the ith member. These nodal displacements are:

$$
\begin{aligned}
\varnothing_{j}= & \text { angle of twist at the shear center about the } \\
& \text { longitudinal z-axis; } \\
\varnothing_{j}^{\prime}= & \text { rate of change of angle of twist at the shear } \\
& \text { center about z-axis; }
\end{aligned}
$$

where the subscript f denotes the generalized displacement at the j end of the ith finite element. Similar generalized nodal displacements exist. at the K end of the element. The prime denotes differentiation with respect to z.

If, the twist within each finite element is assumed to Fary cubicly the displacement function takes the form:

$$
\begin{equation*}
\phi(z)=a+b z+c z^{2}+d z^{3} \tag{3.16}
\end{equation*}
$$

To establish a relationship between the aisplacements at any interior coordinate z in terms of the generalized nodal

79

coordinates, the four arbitrary constants in the assumed, displacement function must be determined. For instance, the constants a, b, c and d can be dotermined from the four simultaneous equations given as follows:

$$
\begin{align*}
& \phi(0)=\varnothing_{j}=a \tag{3.17}\\
& \frac{\partial \phi}{\partial z}(0)=\frac{\partial \varnothing_{j}}{\partial_{z}}=b \tag{3.18}\\
& \varnothing(1)=\phi_{K}=a+b I+c I^{2}+a I^{3} \tag{3.19}\\
& \frac{\partial \phi}{\partial_{z}}(1)=\frac{\partial \varnothing_{K}}{\partial_{z}}=b+2 c l+3 a I^{2} \tag{3.20}
\end{align*}
$$

where 1 is the length of the element which is some fraction of the total beam length L .

Once the four coefficients have been determined, the angle of twist at any coordinate z within the element in terms of the four nodal displacements $\varnothing_{j}, \partial \varnothing_{j} / \partial_{z}, \varnothing_{K}$ and $\partial \varnothing_{K} / \partial_{z}$ is uniquely defined, as follows:
where $\bar{y}^{\prime}=z / 1$ is the dimensionless length of the element of the beam.

Eq. (3.6) can be written in an abtreviated form as:

80

$$
\begin{equation*}
\phi(z)=\bar{A}(z) \bar{R}_{N}(t) \tag{3.22}
\end{equation*}
$$

where
$\bar{A}(z)=\left[\left(1-3 \bar{\xi}_{1}^{2}+2 \bar{\xi}_{1}^{3}\right),\left(z-2 \overline{\bar{\xi}_{1}} z+\bar{\xi}_{1}^{2} z\right),\left(3 \bar{\xi}_{1}^{2}-2 \bar{\xi}_{1}^{3}\right),\left(-\bar{\xi}_{1}^{2} z+\bar{\xi}_{1}^{2} z\right)\right]$
and

$$
\begin{equation*}
\bar{R}_{N}=\left[\phi_{j}, \phi_{j}^{\prime}, \phi_{K}, \phi_{K}^{\prime}\right] \tag{3.24}
\end{equation*}
$$

Similar matrix relations exist for the first and second derivatives of \varnothing which can be written as:

$$
\begin{align*}
& \varnothing^{\prime}(z)=\left(\bar{A}(z) \bar{R}_{N}(t)\right)^{\prime}=\bar{A}_{1}(z) \bar{R}_{N}(t) \tag{3.25}\\
& \varnothing^{\prime \prime}(z)=\left(\bar{A}(z) \bar{R}_{N}(t)\right)^{\prime}=\bar{A}_{2}(z) \bar{R}_{N}(t) \tag{3.26}
\end{align*}
$$

where

$$
\begin{equation*}
\bar{A}_{1}(z)=\left[\left(-6 \frac{z}{1^{2}}+6 \frac{z^{2}}{1^{3}}\right),\left(1-4 \frac{z}{1}+3 \frac{z^{2}}{1^{2}}\right),\left(6 \frac{z}{1^{2}}-6 \frac{z^{2}}{1^{2}}\right),\left(-2 \frac{z}{1}+3 \frac{z^{2}}{1^{2}}\right)\right] \tag{3.27}
\end{equation*}
$$

$\overline{\mathbb{A}}_{2}(z)=\left[\left(-\frac{6}{1^{2}}+12 \frac{z}{1^{3}}\right),\left(-\frac{4}{1}+6 \frac{z}{1^{2}}\right),\left(\frac{6}{1^{2}}-12 \frac{z}{1^{2}}\right),\left(-\frac{2}{1}+6 \frac{z}{I^{2}}\right)\right]$

The generalized velocity and accelerations can also be expressed in terms of the discretized nodal velocities and accelerations. That is:

$$
\begin{equation*}
\dot{\phi}(z)=\overline{\mathrm{A}}(z) \dot{\mathrm{R}}_{\mathrm{N}}(t) \tag{3.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\ddot{\phi}(z)=\overline{\mathrm{A}}(z) \ddot{\mathrm{R}}_{\mathrm{N}}(t) \tag{3.30}
\end{equation*}
$$

where dots denote differentiation with respect to time t.

81

3.46. FORMULATION OF ELEMENT MATRICES:

The oxproevione for the kinetio onorgy T, strain onergy

 U and potential energy W, derived in Chapter II (See Eqs.2.3, (2.8) and (2.4) rempootively) for an olomont of finfto lankth I can be written as follows:$$
\begin{align*}
& T=\frac{1}{2} \int_{0}^{1} \rho I_{p}(\dot{\phi})^{2} d z \tag{3.31}\\
& U=\frac{1}{2} \int_{0}^{1}\left[E C_{w}\left(\phi^{\prime \prime}\right)^{2}+G C_{s}\left(\phi^{\prime}\right)^{2}+K_{t}(\phi)^{2}\right] d z \tag{3.32}
\end{align*}
$$

and

$$
\begin{equation*}
W=\frac{1}{2} \int_{0}^{1} \frac{P I_{p}}{A}\left(\phi^{\prime}\right)^{2} d z \tag{3.33}
\end{equation*}
$$

From Hamilton's principle (S'ee Eq. (2.1)) we have:

$$
\begin{equation*}
\delta I=8 \int_{t_{1}}^{t_{2}}\left(\mathbb{I}_{\bar{k}} U+W\right) d t=0 \tag{3.54}
\end{equation*}
$$

Direct substitution of Eqs. (3.22), (3.25), (3.26), (3.29)
and (3.30) into the energy expressions (3.31), (3.32) and (3.33) yields (for the Nth element):

$$
\begin{align*}
& { }^{\delta I_{N}}=\bar{\delta} \int_{t_{1}}^{t_{R}}\left\{\frac{\rho I_{n}}{\alpha} \int_{0}^{I} \dot{\bar{R}}_{N}^{T} \bar{\Lambda}^{T} \bar{\Lambda} \dot{\bar{R}}_{N}\right\} d x \\
& -\left[\frac{E C}{2} \int_{0}^{T} \bar{R}_{N}^{T} \bar{A}_{2}^{T} \bar{A}_{2} \bar{R}_{N} d z+\frac{G C_{8}}{2} \int_{0}^{1} \bar{R}_{N}^{T} \bar{A}_{1}^{T} \bar{A}_{1} \bar{R}_{N} d z\right. \\
& \left.\left.+\frac{K_{t}}{2} \int_{0}^{I} R_{N}^{T} \bar{A}^{T} \bar{A} \bar{R}_{N} d z\right]+\frac{P I_{p}}{2 A} \int_{0}^{T} \bar{R}_{N}^{T} \bar{A}_{1}^{T} \bar{A}_{1} \bar{R}_{N} d z\right\} d t=0 \tag{3.35}
\end{align*}
$$

Eq.(3.35) can be also written more concisely as:

$$
\begin{align*}
& \overline{\delta I}_{N}=\delta \int_{t_{1}}^{t} \frac{1}{\bar{\varepsilon}}\left[\left(\rho I_{p} L\right) \dot{\dot{R}}_{1 N}^{T} \bar{m}_{N} \frac{\delta}{R}_{1 N}-\left(E C_{W} / I^{3}\right) \bar{R}_{1 N}^{T} \bar{k}_{N} \bar{R}_{1 N}\right. \\
&\left.+\left(P I_{p} / A L\right) \bar{R}_{1 N}^{T} \bar{s}_{N} \bar{R}_{1 N}\right] d t=0 \tag{3.36}
\end{align*}
$$

In Eq. (3.36) the terms $\left(P I_{p} L\right) \bar{m}_{N},\left(E C_{W} / L^{3}\right) K_{N}$ and $\left(P I_{p} / A L\right)^{-} \bar{g}_{N}$ denote respeotively tho mese matrix M_{N}, the stifmose matrix $\overline{\mathrm{K}}_{\mathrm{N}}$ and the stability coefficient matrix $\overline{\mathrm{S}}_{\mathrm{N}}$ of the Nth element. The matrices $\overline{\mathrm{m}}_{\mathrm{N}}, \overline{\mathrm{k}}_{\mathrm{N}}, \overline{\mathrm{s}}_{\mathrm{N}}$ and $\overline{\mathrm{F}}_{1 \mathrm{~N}}$ are given below:

$$
\begin{align*}
& \bar{m}_{N}=\frac{1}{420 N^{4}}\left[\begin{array}{ccll}
156 N^{2} & & \\
22 N & 4 & \text { Sym. } & \\
54 N^{2} & 13 N & 156 N^{2} & \\
-13 N & -3 & -22 N & 4
\end{array}\right] \tag{3.37}\\
& \bar{k}_{N}=\left[\begin{array}{rrll}
12 N^{2} & & \\
6 N & 4 & \text { Sym. } & \\
-12 N^{2} & -6 N & 12 N^{2} & \\
6 N & 2 & -6 N & 4
\end{array}\right] \\
& +\frac{K^{2}}{30 N^{2}}\left[\begin{array}{cccc}
36 N^{2} & & & \\
3 N & 4 & 5 y m . & \\
-36 N^{2} & -3 N & 36 N^{2} & \\
3 N & -\infty & -3 N & 4
\end{array}\right]
\end{align*}
$$

$$
\begin{gather*}
+\frac{\gamma^{8}}{108 N^{4}} \left\lvert\, \begin{array}{rrrl}
156 N^{2} & & \text { Sym. } & \\
22 N & 4 & \\
84 N^{2} & 13 N & 186 N^{2} & \\
-13 N & -3 & -22 N & 4
\end{array}\right. \tag{3.38}\\
\bar{s}_{N}=\frac{1}{30 N^{2}} \left\lvert\, \begin{array}{rrrr}
36 N^{2} & & \\
3 N & 4 & \text { Sym. } & \\
-36 N^{2} & -3 N & 36 N^{2} & \\
3 I & -1 & -3 N & 4
\end{array}\right. \tag{3.39}
\end{gather*}
$$

and

$$
\begin{equation*}
\bar{R}_{1 N}=\left|\phi_{j}, L \partial \phi_{j} / \partial z, \phi_{K}, I \partial \phi_{K} / \partial z\right| \tag{3.40}
\end{equation*}
$$

where N denotes the number of the elements and $Z=z / L$ is the dimensionless length of the total beam.

- The equations of motion for the discretized system can now be obtained by using Eq. (3.36). Taking the variation of the integral expression of Eq.(3.36) we obtain:

$$
\begin{gather*}
\int_{t_{1}}^{t_{2}}\left[\rho I_{p} I \delta \delta \dot{\delta}_{1 N}^{q} \bar{m}_{N} \dot{R}_{1 N}-\left(E C_{W} / I^{3}\right) \bar{\delta}_{1 N}^{T} \bar{k}_{N} \bar{R}_{1 N}\right. \\
\left.+\left(P I_{p} / A L\right) \bar{\delta}_{1 N}^{T} \overline{\bar{G}}_{N} \bar{R}_{1 N}\right] d t=0 \tag{3.41}
\end{gather*}
$$

which after integration by parts over the time interval gives:

$$
\begin{aligned}
& \left.P I_{p} L \delta \tilde{R}_{1 N}^{T} \bar{m}_{N} \tilde{\Omega}_{1 N}\right|_{t_{1}} ^{t_{2}}
\end{aligned}
$$

84

The first term in Eq. (3.42) is seen to vanish in view of the assumptions made previously that the virtual displacements $\delta R_{1 N}$ are zero at the time inmenntif t_{1} and t_{R}. Sinom the virturl displacoment oan be arbltrary for other times then the only way in which the integral expression in Eq. (3.42) can vanish is for the terms within the brackets to equal zero. Therefore, the governing dynamic equilíbrium equations for the discretized system are:

$$
\begin{equation*}
\rho I_{p} L \bar{m}_{N} \ddot{\mathrm{R}}_{1 N}+\left(E C_{W} / L^{3}\right) \bar{k}_{N N} \bar{R}_{1 N}-\left(P I_{p} / A L\right) \bar{s}_{N} \bar{R}_{1 N}=\overline{0} \tag{3.43}
\end{equation*}
$$

Assuming that the displacements undergo harmonic oscillation, then the displacement vector $\overline{\mathrm{R}}_{1 N}$ can be written as:

$$
\begin{equation*}
\bar{I}_{1 N}=\overline{\bar{I}}_{N N} e^{i p_{n} t} \tag{3.44}
\end{equation*}
$$

where \bar{r}_{N} is a column vector of torsional amplitudes of the gene-. ral torsional displacements $\overline{\mathrm{R}}_{\mathrm{N}}$ and p_{n} is the circular frequency of torsional oscillation. Substituting Eq. (3.44) into Eq. (3.43) gives:

$$
\begin{equation*}
\left.\left[\frac{E C}{L^{3}}\right) \bar{k}_{N}-\left(\frac{P I_{p}}{A T}\right) \bar{s}_{N}-\rho I_{p} L p_{n}^{2} \bar{m}_{N}\right] \bar{r}_{N} e^{1 p_{n} t}=\overline{0} \tag{3.45}
\end{equation*}
$$

Deviding throughout by $E C_{w} / I^{3}$ and cancelling $e^{i p_{n} t}$, Eq. (3.45) becomes:

$$
\begin{equation*}
\left[\bar{k}_{N}-\Delta^{2} \bar{s}_{N}\right]\left[\bar{r}_{N}\right]=\lambda^{2}\left[\bar{m}_{N}\right]\left[\bar{r}_{N}\right] \tag{3.46}
\end{equation*}
$$

where Δ^{2} and λ^{2} are respectively the buckling load and frequency
parameters given by:

$$
\begin{equation*}
\Delta^{2}=\frac{P I_{p} \Psi^{2}}{A E C_{W}} \tag{3.47}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda^{2}=\frac{I_{p} I^{4} p_{n}^{2}}{E C_{W}} \tag{3.48}
\end{equation*}
$$

Eq. (3.46) represents the equations of motion for an undamped freely oscillating system.

For a beam which is stationary (not vibrating), $\lambda=0$ and Eq. (3.46) reduces to:

$$
\begin{equation*}
\left[\overline{\mathrm{k}}_{\mathrm{N}}\right]\left[\bar{r}_{\mathrm{N}}\right]=\Delta^{2}\left[\bar{s}_{\mathrm{N}}\right]\left[\bar{r}_{\mathrm{N}}\right] \tag{3.49}
\end{equation*}
$$

Mq. (5.49) represerits the equations of motion for the torsional buckling of a beam resting on continuous elastic foundation.

3.5. EQUATIONS OF EQUILIBRIUM FOR THE TOTALLY ASSEMBLED BEAM:

As previously mentioned, the matrices $\bar{E}_{N}, \bar{S}_{N}, \bar{M}_{N}$ and \bar{R}_{N} pertain only to the Nth finite element and are thus denoted as the element matrices. To obtain the total strain energy, potential enorgy and Kinotic enorgy of the beam as an assemblage of N finite elements, the standard finite element procedure is employed. The procedure consists of summine the contributions of each element to form overall stiffness, stability coefficient, mass and displacement matrices which reflect the total energy of the entire beam.

86

The variation of total energy δI for a thin-walled beam consisting of N finite elements is

$$
\begin{align*}
\bar{\delta} I= & \sum_{N=1}^{N} \bar{\delta}_{N}=\sum_{N=1}^{N} \frac{1}{2} \int_{t_{1}}^{t_{2}}\left[\rho I_{p} L \delta \dot{R}_{1 N}^{T} \bar{m}_{N} \dot{\bar{R}}_{1 N}\right. \\
& \left.-\left(E C_{W} / L^{3}\right) \bar{\delta} \bar{R}_{1 N}^{T} \bar{k}_{N} \bar{R}_{1 N}+\left(P I_{p} / A L\right) \bar{\delta}_{1 N}^{T} \bar{s}_{N} \bar{R}_{1 N}\right] d t=0 \tag{3.50}
\end{align*}
$$

After sumation and integration by parts over the time interval Eq.(3.50) becomes:

$$
\begin{align*}
\rho I_{p} L & \left.\delta \bar{R}^{T} \bar{m}_{R_{1}}\right|_{t_{1}} ^{t_{2}} \\
& -\int_{t_{1}}^{t} \delta \bar{R}_{1}^{T}\left[\rho I_{p} I \bar{m} \bar{R}_{1}+\left(E C_{W} / I^{3}\right) E R_{1}-\left(P I_{p} / A L\right)_{\bar{s}} \bar{R}_{1}\right] d t=0 \tag{3.51}
\end{align*}
$$

From Eq. (3.51) the equations of equilibrium for the totally assembled beam can be written as:

$$
\begin{equation*}
\left[\bar{k}-\Delta^{2} \overline{\bar{s}}\right][\bar{r}]=\lambda^{2}[\bar{m}][\bar{r}] \tag{3.52}
\end{equation*}
$$

Whore \bar{F}, $\overline{\mathrm{B}}, \overline{\mathrm{m}}$ and $\overline{\mathrm{x}}$ donote the totally asoombled matrioes oorresponding to the element matrices $\bar{k}_{N}, \bar{s}_{N}, \bar{m}_{N}$ and \bar{r}_{N} defined previously. With the two generalized displacements possible at each node and, with the bar segmented into N elements, the number of degrees of freedom is $2(N+1)$.

For a beam which is stationary and not vibrating, $\lambda=0$ and Eq.(3.52) becomes:

$$
\begin{equation*}
[\bar{E}][\bar{Y}]=\Delta^{2}[\overline{\mathrm{~B}}][\overline{\mathrm{I}}] \tag{3.53}
\end{equation*}
$$

The formulation of the above matrix equilibrium equations for the totally assembled beam, Fq8.(3.62) and (3.53) Inolude all poisible cogroos of freedom, both free and restrained. The displacement vector \bar{r} of this overall joint equilibrium equations is comprisod of both degroes of froedom, tho unienowns of the problems and known support displacoments or boundary oonditions.

3.6. BOUNDARY CONDITIONS:

It should be recalled here that for the present finite element formulation, only two generalized dieplacements are considered at each node. Hence, to modify the total stiffness, mass and stability ooeffioient matrioos for various combinations of end supports the following boundary oonditions are to be utiligod:
(a)for a 'simply supported end'", the end of the bar does not rotate but is free to warp and hence, $\varnothing=0$
(b) for a 'olamped ond", the end of the bar is builtIn rigidly so that no deformation of the ond oross seotion can take place and we have,

$$
\begin{equation*}
\varnothing=0 \text { and } \varnothing^{\prime}=0 \tag{3.55}
\end{equation*}
$$

(o) for a 'ifreo ond'i the total matrices are to bo used without any modifioation.

3.7. METHOD OF SOLUTION:

A general computer program is written in Fortran IV to suit the IBM 1130 Computer at the Computer Center, Andhra University, Waltair, in order to obtain the elgenvalues 1.e., frequency parameter λ^{2} and bucking load parameter \triangle for varlous values of the foundation parameter γ, and their associated eigen vectors for various end conditions.

The steps involved in the computation program are as follows:

1. To read in the element properties, number of elements N, and boundary conditions.

2: To form element stiffness, stability coefficient and mass matrices.
3. To assemble the total stiffness, stability coefficient and mass matrices.
4. To modify the total matrices according to the specified boundary conditions.
5. To solve the eigenvalue problem utilizing Jacobi's method. To print the given element properties, boundary conditions, number of elements, eigenvalues and their associated eigenvectors.

8.8. RESULTS AND COHCLUSIONS:

The values of λ^{2} for the first five frequencies of toraional vibration of simply-supported berm, obtained for a division of the beam into $\mathbb{N}=2,4$ and 6 segments for values of Warping parameter $\mathrm{K}=1$ and 10, and for values of foundation parameter $\gamma=2,4,6,8,10$ and 12 are shown in Tables 3.1 and 3.2 respeotively, which oen be observed to oompare well with the exact results obtained in Chapter II. The values of λ^{2} for the first five torsional frequencies of simply supported beam, for a division of the beam into $\mathrm{N}=6$ segments, for values of warping parameter $K=0.01$ and 0.1 , for various values of $\gamma=2,4$, 6,8,10 and 12 are presented in Tables 3.3 and 3.4 respectively and have compared well with the exact ones.

In Tables 3.5 and 3.6 the results for free-free and fixedfixed beems are presented respectively for a division of the beem into $\mathrm{N}=6$ segments for values of $\mathrm{K}=0.01,0.1,1.0$ and 10 for various values of $\gamma=2,4,6,8,10$ and 12 . From the results presented in Tables 3.1 to 3.6 , it can be observed that the frequency parameter λ^{2} increases for increasing values of the foundation paremeter γ. It can also be observed that as the mode number n increases (ie., for higher modes) the influence of foundation parameter γ decreases. The influence of increasing values of the warping parameter K can be observed to be increasing the frequency parameter λ^{2} irrespective of the effect of the continuous elastic foundation. It cen be concluded

TABIE-3.1

Values of the frequency parameter ${ }^{2}$ for simply supported inin-walled beams of oper section on

Elastic foundation for various values of foundation parameter \bar{r} for a value of waroing parameter
$\bar{K}=1$.

\%	Number of Mode	Number of Elemenies			Exact Results	
		2	4	6		
0	I			107.28663	107.443	
	II			1600.54248	1600.56	
	III	\cdots	---	8041.36524	7991.74	
	IV			25687.86724	25134.9	
	V			64403.65635	61225.6	
2	I	124.05284	123.32942	123.29409	123.443	
	II	1975.99805	1626.36743	1616.54785	1616.56	0
	III	12240.98830	8286.18947	3057.38282	3007.74	e
	IV	40503.98448	30985.92192	25703.84770	25510.9	
	V	---	77881.84396	6 2419.64073	61241.6	
4	I	172.05264	171.32846	171.28823	171.443	
	II	2023.99731	1674.36645	1664.54345	1664.56	
	III	12288.99026	8334.18362	3105.38184	3055.74	
	IV	40551.96885	30943.92583	25751.87114	25198.0	
	V	---	77929.82833	6 ± 467.64854	61289.6	

91

\cdots			
H゙枵	Hi゚¢	H	み枵云の6
－${ }^{+1} 0^{\circ} 0^{\circ}$			mé
的み以 ヘ～～NM	M N M＋	O8OM N	$\begin{aligned} & 0 \text { 둥 } \\ & 0 \end{aligned}$
Nत्NOM	${ }^{\infty} \infty$		
Q 0	ヘ 6	～o	$\wedge 0$

TABIE-3.2
Values of the Frequency parameter α^{2} for simply supported thin-walled beams of open section on
Elastic foundation for various values of foundation parameter $\overline{\mathrm{F}}$ for a value of warping paramete
$\overline{\bar{K}}=10$.

EV	Number of Mode	Number of Elements			Exact Results
		2	4	6	
0	IT			1084.37207	1085.
	II			5509.04395	5512.07
	IIV	--	---	16838.35552	16792.6
	V			41347.17977	≤ 0780.9
				8895.62521	85672.6
2	I	1101.46338	1100.42187	1100.37646	1101.32
	II	5935.99415	5536.11720	5525.04298	5528.07
	III	21571.76177 57135.97666	17105.23832	16854.35161	16808.6
	-	57135.97666	46735.88291 102839.67208	41363.17196	≤ 0796.9
	,	-	102839.67208	88871.62521	85688.6
4	I	1149.46362	1148.42114	1148.37182	1149.32
	II	5983.99513	5584.11913	5573.03223	5576.07
	IIV	21619.76177	17153.24223	16902.34770	16856.6
	-	57183.96885	46783.87510	41411.21102	40924.9
			102887.67208	89019.65646	85736.6

TABLE -3.2 (Contd.)

94

TABLE-3.3
 walled begns of open gection on Eiastic foundation for varlous valueg of foundation paraneter for a value of warping parameter $\mathrm{R}=0.01$.

7	Number of Mode	Number of Elements 6	Exact Results
0	I	97.42036	
	II	1561.06689	
	III	7952.49806	---
	IV	25529.69145	
	V	64155.57041	
2	I	113.42420	113.566986
	II	1577.08105	1577.060061
	III	7968.49513	7918.854505
	IV	25545.68363	24992.914115
	V	64171.59385	60994.773544
4	I	161.41571	161.566986
	II	1625.07593	1625.060061
	III	8016.49122	7966.854505
	IV	25593.67192	25040.914115
	V	64219.60948	61042.773544
6	I	241.41577	241.566986
	II	1705.07324	1705.060061
	III	8096.49122	8046.854505
	IV	25673.68363	25120.914115
	V	64299.58604	61122.773544
8	I	353.42065	353.567017
	II	1817.07251	1817.060061
	III	8208.49221	8159.854505
	IV	25785.68754	25232.914115
	V	64411.55479	61234.773544
10	I	497.42071	497.567017
	II	1961.07226	1961.060061
	III	8352.50002	8302.855491
	IV	25929.67582	25376.914115
	V	64555.60948	61378.773544
12	I	673.41674	673.567018
	II	2137.07080	2137.060065
	III	8528.49807	8478.855491
	IV	26105.66801	25552.914115
	V	64731.57823	61554.773544

95

TABLE-3.4.
Values of the Frequenoy parameter A^{2} for simply supported thinwalled beams of open section on Elastic foundation for various values of foundation parameter for a value of warping parameter $\bar{K}=0.100$.

γ	Number of Mode	Number of Elements 6	Exact Results
0	I	97.51748	
	II	1561.46094	
	III	7953.36817	---
	IV	25531.24613	
	V	64158.03915	
2	I	113.52183	113.664779
	II	1577.46582	1577.451174
	III	7969.38282	7919.735364
	IV	25547.23442	24994.476615
	V	64174.04696	60997.218841
4	1 I	161.51513	161.664795
	II	1625.46216	1625.451174
	III	8017.38184	7967.735364
	IV	25595.25395	25042.437615
	V	64222.00010	61045.218841
	I	241.51611	241.664795
6	II	1705.46167	1705.451174
	III	8097.40040	8047.735364
	IV	25675.24613	25122.476615
	V	64:302.00790	61125.218841
8	I	353.51928	$\because 353.6647 .95$
	II	1817.46264	1817.451174
	III	8209.38088	8159.735364
	IV	$\begin{aligned} & 25787.25786 \\ & 64413.99220 \end{aligned}$	$\begin{aligned} & 25234.476615 \\ & 61237.218841 \end{aligned}$
10			
	II	497.51690 1961.46142	497.664795
	III	8353.38479	18303.736354
	IV	25931.24613	25378.476615
	V	64558.05477	61381.218841
12	I	673.51562	B73.664796
	II	2137.45606	2137.45117
	III	8529.28283	8479.736354
	IV	26107. 25395	25554.476615
	V	64734.04696	61457.218841

TABLE- 3.5
Values of the Frequency parameter λ^{2} for fixed-fixed thin-walled beams of open section on miastic foun-
dation for various values of foundation and warping parameters $\hat{*}$ and $\overline{\mathrm{K}}$ respectively $(\mathrm{N}=6)$.
Values of
8

T A B L E - 3.6

tion for various values of foundation and warping parameters γ and I respectively ($N=6$).

therefore, that increase in the values of warping parameter K and foundation parameter γ contribute for the increase in the torsional frequency parameter λ^{2}.

In Tables $3.7,3.8$ and 3.9 , the values of the frequency parameter λ^{2} for the first five modes of Vibration are presented for simply-supported, fixed-fixed and, fixed-simply supported beams respectively, for various values of axial load parameter \triangle and foundation parameter γ, for a value of warping parameter $K=1$. These results are given for a division of the beam into four and six segments. It can be observed from Table 3.7 , that the results for the simply-supported beams compare well with the exact ones. It can be also notioed that increase in the value of axial load parameter \triangle, for any constant or zero values of the foundation parameter γ and warping parameter K, is to decrease the value of the frequency parameter λ^{2}. Similarly it can be observed that, for any constant or zero values of the axial load parameter \triangle, the increase in the values of foundation parameter γ and warping parameter K is to increase the value of the frequency parameter λ^{2}.

Hence It can be concluded that the combined influence of axial load parameter \triangle, foundation parameter i and warping parameter K on the frequency parameter λ^{2} is the algebraic sum of the individual influences of these parameters. In general, for all the cases presented here, the results from the finite element analysis are in excellent agreement with the exact results from Chapter II, and tho oonvorgence of the results io quite matis-
TABLE-3.7
Values of the frequency parameter λ^{2} for simply supporied beams for various values of axial load
parameter Δ and foundation parameter γ for a value $0 \geq K=1$.

T A B L E - 3.8

Values of the frequency parameter λ^{2} for fixed-fixed beams for various values of axial
100

Value of γ	Value of \triangle	Mode No.	Number of Elements	
			4	6
0.0	2.0	I	606.6059	474.5637
		II	3732.2152	3719.4751
		III	14463.6348	14153.3851
		IV	53954.4631	40699.0235
		V	146916.5902	93660.2189
6.0	2.0	I	750.6064	625.8259
		II	3876.2219	3863.4802
		III	14607.4632	14297.6426
		IV	54098.5733	40843.0235
		V	147060.7452	93810.2189
6.0	6.6	I	266.1976	210.3856
		II	2036.6875	2022.8406
		III	10659.9258	10340.2461
		IV	46728.1719	33990.2423
		V	135125.3488	82926.8439

load parameter Δ and foundation parameter γ for a value of $K=1$.
\# A B LE -3.9
Values of the frequency parameter λ^{2} for fixed-simply supported beams for verivis
values of axial load parameter Δ and foundation paramete $=?$ for a value of $\mathbb{K}=\mathbb{1}$.

Value of γ	Value of Δ	Mode No.	Fumber of Elements	
			4	¢
0.0	3.0	I	178.7215	149.82 으?
		II	2069.13 ± 8	1931.5781
		III	10244.8752	10065.7076
		IV	38389.3 ¢86	30721.652:
		V	102718.9681	76119.406
6.0	3:0	I	322.7196	299.8209
		II	2213.1309	2075.975 57
		III	10388.8594	10209.6878
		IV	38533.2974	30865.6524
		V	102863.2427	76263.4227
6.0	4.7	I	257.3521	210.5931
		II	1653.0818	1498.07\%1
		III	9167.3867	9004.3523
		IV	36271.5834	28703. 0106
		\checkmark	99361.3712	72872.9689

factory for a division of the beam into six elements. Hence, the finite element model presented in this Chapter, which includes the effects of warping, axial compressive load and elastic foundation is quite satisfactory and yields good results.

[^0]: * Part of the results from this chapter were published by the author and A.A.Satyam in February 1975 issue of AIAA Joumal, see Ref. 47.

[^1]: $1.0 \quad 0.04 .9070579 .792 \quad 4.9424596 .6795 .2711 \quad 771.9955 .2995788 .7465 .74841091 .8925 .7021108 .556$ 2.04 .8826531 .9864 .8296544 .0415 .1872723 .9855 .2088736 .1365 .68401043 .7945 .2171056 .895 $4.04^{\prime 4} 382387.9944 .4325386 .1274 .9074579 .9744 .9038578 .2685 .4772899 .9935 .4745898 .235$

 8 ! 0 10
 00
 0.0
 0.0
 Nin

 $$
 \begin{aligned}
 & \text { ๗~N } \\
 & 2279.795 \\
 & \text { ò }
 \end{aligned}
 $$

[^2]: * Part of the results from this Chapter were published by the author, B.V.R.Gupta and D.I.N.Rao in the Proceedings of the International Conference on Finite Element Methods in Engineering, held at Coimbatore Institute of Technology, Coimbatore, India, during 6-7 December 1974. See Ref. (48).

